matlab遗传算法实数编码
⑴ matlab的遗传算法 如何调用已经训练好的神经网络输出
遗传算法优化的BP神经网络建模借鉴别人的程序做出的仿真,最近才有时间整理。
目标:
对y=x1^2+x2^2非线性系统进行建模,用1500组数据对网络进行构建网络,500组数据测试网络。由于BP神经网络初始神经元之间的权值和阈值一般随机选择,因此容易陷入局部最小值。本方法使用遗传算法优化初始神经元之间的权值和阈值,并对比使用遗传算法前后的效果。
步骤:
未经遗传算法优化的BP神经网络建模
1、 随机生成2000组两维随机数(x1,x2),并计算对应的输出y=x1^2+x2^2,前1500组数据作为训练数据input_train,后500组数据作为测试数据input_test。并将数据存储在data中待遗传算法中使用相同的数据。
2、 数据预处理:归一化处理。
3、 构建BP神经网络的隐层数,次数,步长,目标。
4、 使用训练数据input_train训练BP神经网络net。
5、 用测试数据input_test测试神经网络,并将预测的数据反归一化处理。
6、 分析预测数据与期望数据之间的误差。
遗传算法优化的BP神经网络建模
1、 读取前面步骤中保存的数据data;
2、 对数据进行归一化处理;
3、 设置隐层数目;
4、 初始化进化次数,种群规模,交叉概率,变异概率
5、 对种群进行实数编码,并将预测数据与期望数据之间的误差作为适应度函数;
6、 循环进行选择、交叉、变异、计算适应度操作,直到达到进化次数,得到最优的初始权值和阈值;
7、 将得到最佳初始权值和阈值来构建BP神经网络;
8、 使用训练数据input_train训练BP神经网络net;
9、 用测试数据input_test测试神经网络,并将预测的数据反归一化处理;
10、 分析预测数据与期望数据之间的误差。
⑵ 在matlab中如何用遗传算法求解函数和的最小值
该程序采用实数编码的遗传算法编写,附件1(real code ga.m)为matlab代码。
附件2(实数编码遗传算法参考资料):
http://www.math.zju.e.cn/cagd/resources/thesis/PhDthesis_ZhouMingHUa.pdf
优化结果需要修改mutate_P以及变异量的大小。因为只有一个优化变量因此编程较为简单。
提供一个参考链接:http://..com/question/583959020.html?oldq=1
⑶ 如何用遗传算法实现多变量的最优化问题
是不是像求函数最值那样子?建议你了解一下遗传算法的实数编码,这个对于求函数最值很方便,不用像二进制那样需要转换。
简单介绍一下思路:
最重要的是确定适应度函数,只要确定这个函数就很容易了,就用你不会编程,直接调用matlab的工具箱就行了。
1st.设置种群规模,并初始化种群p,并计算各个个体的适应度。
例如,20个个体,每个个体包含5个变量,x1,x2,x3,x4,x5.
如果你用matlab来编程的话,这个可以很容易实现,会用到random('unif',a,b)这个函数吧。
例如x1的取值范围是[0,1],那么x1=random('unif',0,1).
2nd.采用轮盘赌选出可以产生后代的父本,p_parents。
额,轮盘赌的实质就是适应度大的被选出的概率大。这个不难,但说起来比较长,你可以自己去看一下。
3rd.杂交过程的思路随机将p_parents中的个体随机两两配对,然后随机产生一个1到n的数(n为变量的个数),设为i,交换每对父本中i之后的变量值。交换以后的p_parents成为后代p_offspring.
这里变起来有点点复杂,不过只要耐心一点,编好配对过程和交换过程。
4th.变异过程,这个比较简单,不过需要自己把握的较好。
基本的思路是设置一个概率,例如0.05,然后产生一个随机数如果随机数比0.05小那么这个变量值就要产生微小的增加或减少。
这个变异过程要历遍p_offspring所有的变量喔。
5th.将p和p_offspring合并起来,然后选出适应度大的,重新构成一个如原始种群规模相等的种群。
⑷ 求一个基本遗传算法的MATLAB代码
我发一些他们的源程序你,都是我在文献中搜索总结出来的:
%
下面举例说明遗传算法
%
%
求下列函数的最大值
%
%
f(x)=10*sin(5x)+7*cos(4x)
x∈[0,10]
%
%
将
x
的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为
(10-0)/(2^10-1)≈0.01
。
%
%
将变量域
[0,10]
离散化为二值域
[0,1023],
x=0+10*b/1023,
其中
b
是
[0,1023]
中的一个二值数。
%
%
%
%--------------------------------------------------------------------------------------------------------------%
%--------------------------------------------------------------------------------------------------------------%
%
编程
%-----------------------------------------------
%
2.1初始化(编码)
%
initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),
%
长度大小取决于变量的二进制编码的长度(在本例中取10位)。
%遗传算法子程序
%Name:
initpop.m
%初始化
function
pop=initpop(popsize,chromlength)
pop=round(rand(popsize,chromlength));
%
rand随机产生每个单元为
{0,1}
行数为popsize,列数为chromlength的矩阵,
%
roud对矩阵的每个单元进行圆整。这样产生的初始种群。
%
2.2.2
将二进制编码转化为十进制数(2)
%
decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置
%
(对于多个变量而言,如有两个变量,采用20为表示,每个变量10为,则第一个变量从1开始,另一个变量从11开始。本例为1),
%
参数1ength表示所截取的长度(本例为10)。
%遗传算法子程序
%Name:
decodechrom.m
%将二进制编码转换成十进制
function
pop2=decodechrom(pop,spoint,length)
pop1=pop(:,spoint:spoint+length-1);
pop2=decodebinary(pop1);
%
2.4
选择复制
%
选择或复制操作是决定哪些个体可以进入下一代。程序中采用赌轮盘选择法选择,这种方法较易实现。
%
根据方程
pi=fi/∑fi=fi/fsum
,选择步骤:
%
1)
在第
t
代,由(1)式计算
fsum
和
pi
%
2)
产生
{0,1}
的随机数
rand(
.),求
s=rand(
.)*fsum
%
3)
求
∑fi≥s
中最小的
k
,则第
k
个个体被选中
%
4)
进行
N
次2)、3)操作,得到
N
个个体,成为第
t=t+1
代种群
%遗传算法子程序
%Name:
selection.m
%选择复制
function
[newpop]=selection(pop,fitvalue)
totalfit=sum(fitvalue);
%求适应值之和
fitvalue=fitvalue/totalfit;
%单个个体被选择的概率
fitvalue=cumsum(fitvalue);
%如
fitvalue=[1
2
3
4],则
cumsum(fitvalue)=[1
3
6
10]
[px,py]=size(pop);
ms=sort(rand(px,1));
%从小到大排列
fitin=1;
newin=1;
while
newin<=px
if(ms(newin))
评论
0
0
加载更多
⑸ MATLAB中遗传算法编程中,二进制编码如何处理实数变量
假如你想要编码为x,设x的范围是【min,max】,二进制编码长度为10,那二进解码方式是:x*(max-min)/1023,这个不用开始编码,开始你可以用rand(n,10)产生n个样本的随机数,然后优化即可。
不是能把“数学模型中的目标函数和每一条约束函数分别编程Matlab里的M文件”,是你用遗传算法就必须要编进去,电脑怎么知道往哪个方向优化是好的,要不把你邮箱留下,我给你发个寻求最大值的遗传算法。
⑹ 遗传算法的matlab代码实现是什么
遗传算法我懂,我的论文就是用着这个算法,具体到你要遗传算法是做什么?优化什么的。。。我给你一个标准遗传算法程序供你参考:
该程序是遗传算法优化BP神经网络函数极值寻优:
%% 该代码为基于神经网络遗传算法的系统极值寻优
%% 清空环境变量
clc
clear
%% 初始化遗传算法参数
%初始化参数
maxgen=100; %进化代数,即迭代次数
sizepop=20; %种群规模
pcross=[0.4]; %交叉概率选择,0和1之间
pmutation=[0.2]; %变异概率选择,0和1之间
lenchrom=[1 1]; %每个变量的字串长度,如果是浮点变量,则长度都为1
bound=[-5 5;-5 5]; %数据范围
indivials=struct('fitness',zeros(1,sizepop), 'chrom',[]); %将种群信息定义为一个结构体
avgfitness=[]; %每一代种群的平均适应度
bestfitness=[]; %每一代种群的最佳适应度
bestchrom=[]; %适应度最好的染色体
%% 初始化种群计算适应度值
% 初始化种群
for i=1:sizepop
%随机产生一个种群
indivials.chrom(i,:)=Code(lenchrom,bound);
x=indivials.chrom(i,:);
%计算适应度
indivials.fitness(i)=fun(x); %染色体的适应度
end
%找最好的染色体
[bestfitness bestindex]=min(indivials.fitness);
bestchrom=indivials.chrom(bestindex,:); %最好的染色体
avgfitness=sum(indivials.fitness)/sizepop; %染色体的平均适应度
% 记录每一代进化中最好的适应度和平均适应度
trace=[avgfitness bestfitness];
%% 迭代寻优
% 进化开始
for i=1:maxgen
i
% 选择
indivials=Select(indivials,sizepop);
avgfitness=sum(indivials.fitness)/sizepop;
%交叉
indivials.chrom=Cross(pcross,lenchrom,indivials.chrom,sizepop,bound);
% 变异
indivials.chrom=Mutation(pmutation,lenchrom,indivials.chrom,sizepop,[i maxgen],bound);
% 计算适应度
for j=1:sizepop
x=indivials.chrom(j,:); %解码
indivials.fitness(j)=fun(x);
end
%找到最小和最大适应度的染色体及它们在种群中的位置
[newbestfitness,newbestindex]=min(indivials.fitness);
[worestfitness,worestindex]=max(indivials.fitness);
% 代替上一次进化中最好的染色体
if bestfitness>newbestfitness
bestfitness=newbestfitness;
bestchrom=indivials.chrom(newbestindex,:);
end
indivials.chrom(worestindex,:)=bestchrom;
indivials.fitness(worestindex)=bestfitness;
avgfitness=sum(indivials.fitness)/sizepop;
trace=[trace;avgfitness bestfitness]; %记录每一代进化中最好的适应度和平均适应度
end
%进化结束
%% 结果分析
[r c]=size(trace);
plot([1:r]',trace(:,2),'r-');
title('适应度曲线','fontsize',12);
xlabel('进化代数','fontsize',12);ylabel('适应度','fontsize',12);
axis([0,100,0,1])
disp('适应度 变量');
x=bestchrom;
% 窗口显示
disp([bestfitness x]);
⑺ 关于遗传算法的MATLAB实现
function [x fx string]=fun_SuiJiSuanFa2(N,genLenth,Pc,Pm,downbound,upbound,generation)
%[x fx string]=fun_SuiJiSuanFa2(6,16,0.7,0.01,-3,3,100)
%f 表示函数
%N表示染色体种群大小
%genLenth表示染色体长度
%Pc表示交叉概率
%Pm表示突变概率
%downbound
%upbound
%generation循环代数
%进制编码,此处编写为二进制
num=2;
initdata=randi([0 num-1],N,genLenth);
%二进制编码的权值
weight=(num).^(genLenth/2-1:-1:0);
weights=repmat(weight,N,1);
%保存每代的最好值和平均值,
meanally=zeros(1,generation);
maxally=zeros(1,generation);
Nowx=zeros(generation,genLenth);
for k=1:generation
%解码后的整数
allx1=sum(initdata(:,1:genLenth/2).*weights,2);
allx2=sum(initdata(:,genLenth/2+1:end).*weights,2);
%映射到取值范围
delt=(upbound-downbound)/(num^(genLenth/2)-1);
allx1=allx1.*delt+downbound;
allx2=allx2.*delt+downbound;
%染色体的适应性
ally=f(allx1,allx2);
%平均值,最大值
meanally(k)=mean(ally);
maxally(k)=max(ally);
%找下标,确定是哪条染色体
index=find(ally==maxally(k));
Nowx(k,:)=initdata(index(1),:);
%最大值没有提高就取上次的
if(k>=2&&maxally(k)<maxally(k-1))
maxally(k)=maxally(k-1);
Nowx(k,:)=Nowx(k-1,:);
end
%染色体的适应性比率
ratio=ally./sum(ally);
%交叉,变异
%??交叉几个,从第几个开始。
%此处只交叉1个(总共才6个),随机给一个。
sumRatio=cumsum(ratio);
data=zeros(N,genLenth);
for i=1:N/2
Select1=find(sumRatio>=rand);
Select2=find(sumRatio>=rand);
data(2*i-1,:)=initdata(Select1(1),:);
data(2*i,:)=initdata(Select2(1),:);
if(rand<Pc)
%交叉
location=randi([1,genLenth]);
temp=data(2*i-1,location:end);
data(2*i-1,location:end)=data(2*i,location:end);
data(2*i,location:end)=temp;
else
%变异
if(rand<Pm)
location=randi([1,genLenth]);
data(2*i-1,location)=1-data(2*i-1,location);
end
if(rand<Pm)
location=randi([1,genLenth]);
data(2*i,location)=1-data(2*i,location);
end
end
end
initdata=data;
end
fx=max(maxally);
lastIndex=find(maxally==fx);
string=Nowx(lastIndex(1),:);
x(1)=sum(string(1:genLenth/2).*weight).*(upbound-downbound)/(num^(genLenth/2)-1)+downbound;
x(2)=sum(string(1+genLenth/2:end).*weight).*(upbound-downbound)/(num^(genLenth/2)-1)+downbound;
%绘制性能图
%figure,hold on;
clf;figure(1),hold on;
plot((1:k)',meanally,'b.-');
plot((1:k)',maxally,'r.:');
end
function fun=f(x,y)
fun=(1-x).^2.*exp(-x.^2-(1+y).^2)-(x-x.^3-y.^3).*exp(-x.^2-y.^2);
%fun=-(x-1).^2-3.*(y-2).^2+100;
end
⑻ 我想请教一下遗传算法里面的实数编码是怎么一回事,我在做一个多目标优化的问题,希望您能指点
说的是用函数crtrp产生初始种群吧,格式为chrom=crtrp(个体数,约束);
个体数即希望产生的初始种群数,
约束为矩阵,表示变量的取值范围。如:[-10,-5,-3,-2;10,5,3,2]表示有四个变量,范围分别是
[-10,10],[-5,5],[-3,3],[-2,2]。这样就会产生一个初始种群有四列,是随机取值。
希望有用,当然别忘了支持一下啊!互相学习。。。
⑼ matlab2008遗传算法工具箱采用的是二进制编码还是实数编码
两种编码都有,可以自己选择。
你在MATLAB2008里输入 gaoptimset
会弹出遗传算法的所有的设置选项及默认项。其中,第一行就是个体的编码方式,第一行如下
PopulationType: [ 'bitstring' | 'custom' | {'doubleVector'} ]
其中,bitstring就是二进制编码,而'doubleVector'即实数编码(MATLAB里实数是用double双精度浮点数表示的,精度很高。大括号{}表示是默认设置。
而中间的'custom'是表示用户自己构造个体的编码形式。(参加GA算例,在美国地图中的TSP问题,很帅~
加油,MATLAB是个好软件~~~