预测类算法
发布时间: 2023-08-18 16:25:17
A. 机器学习中的各种算法适用于哪些预测
1.决策树(Decision Trees):
决策树是一个决策支持工具,它使用树形图或决策模型以及序列可能性。包括各种偶然事件的后果、资源成本、功效。下图展示的是它的大概原理:
从业务决策的角度来看,大部分情况下决策树是评估作出正确的决定的概率最不需要问是/否问题的办法。它能让你以一个结构化的和系统化的方式来处理这个问题,然后得出一个合乎逻辑的结论。
2.朴素贝叶斯分类(Naive Bayesian classification):
朴素贝叶斯分类是一种十分简单的分类算法,叫它朴素贝叶斯分类是因为这种方法的思想真的很朴素,朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。
它的现实使用例子有:
将一封电子邮件标记(或者不标记)为垃圾邮件
将一篇新的文章归类到科技、政治或者运动
检查一段文本表达的是积极情绪还是消极情绪
脸部识别软件
3.最小二乘法(Ordinary Least Squares Regression):
如果你懂统计学的话,你可能以前听说过线性回归。最小二乘法是一种计算线性回归的方法。你可以把线性回归当做在一系列的点中画一条合适的直线的任务。有很多种方法可以实现这个,“最小二乘法”是这样做的 —你画一条线,然后为每个数据点测量点与线之间的垂直距离,并将这些全部相加,最终得到的拟合线将在这个相加的总距离上尽
热点内容