linux内存地址
① linux内存管理--linux内核高端内存
linux内核地址映射模型
x86
CPU采用了段页式地址映射模型。进程代码中的地址为逻辑地址,经过段页式地址映射后,才真正访问物理内存。
段页式机制如下图。
linux内核地址空间划分
通常32位linux内核地址空间划分0~3G为用户空间,3~4G为内核空间。注意这里是32位内核地址空间划分,64位内核地址空间划分是不同的。
linux内核高端内存的由来
当内核模块代码或线程访问内存时,代码中的内存地址都为逻辑地址,而对应到真正的物理内存地址,需要地址一对一的映射,如逻辑地址0xc0000003对应的物理地址为0×3,0xc0000004对应的物理地址为0×4,…
…,逻辑地址与物理地址对应的关系为
物理地址
=
逻辑地址
0xC0000000
逻辑地址物理内存地址0xc00000000×00xc00000010×10xc00000020×20xc00000030×3…
…
0xe00000000×20000000……0xffffffff0×40000000
??
显然不能将内核地址空间0xc0000000
~
0xfffffff全部用来简单的地址映射。因此x86架构中将内核地址空间划分三部分:ZONE_DMA、ZONE_NORMAL和ZONE_HIGHMEM。ZONE_HIGHMEM即为高端内存,这就是内存高端内存概念的由来。
在x86结构中,三种类型的区域如下:
ZONE_DMA
内存开始的16MB
ZONE_NORMAL
16MB~896MB
ZONE_HIGHMEM
896MB
~
结束
linux内核高端内存的理解
前面我们解释了高端内存的由来。
linux将内核地址空间划分为三部分ZONE_DMA、ZONE_NORMAL和ZONE_HIGHMEM,高端内存HIGH_MEM地址空间范围为0xF8000000
~
0xFFFFFFFF(896MB~1024MB)。那么如内核是如何借助128MB高端内存地址空间是如何实现访问可以所有物理内存?
当内核想访问高于896MB物理地址内存时,从0xF8000000
~
0xFFFFFFFF地址空间范围内找一段相应大小空闲的逻辑地址空间,借用一会。借用这段逻辑地址空间,建立映射到想访问的那段物理内存(即填充内核PTE页面表),临时用一会,用完后归还。这样别人也可以借用这段地址空间访问其他物理内存,实现了使用有限的地址空间,访问所有所有物理内存。如下图。
例如内核想访问2G开始的一段大小为1MB的物理内存,即物理地址范围为0×80000000
~
0x800FFFFF。访问之前先找到一段1MB大小的空闲地址空间,假设找到的空闲地址空间为0xF8700000
~
0xF87FFFFF,用这1MB的逻辑地址空间映射到物理地址空间0×80000000
~
0x800FFFFF的内存。映射关系如下:
逻辑地址物理内存地址0xF87000000×800000000xF87000010×800000010xF87000020×80000002…
…0xF87FFFFF0x800FFFFF
当内核访问完0×80000000
~
0x800FFFFF物理内存后,就将0xF8700000
~
0xF87FFFFF内核线性空间释放。这样其他进程或代码也可以使用0xF8700000
~
0xF87FFFFF这段地址访问其他物理内存。
从上面的描述,我们可以知道高端内存的最基本思想:借一段地址空间,建立临时地址映射,用完后释放,达到这段地址空间可以循环使用,访问所有物理内存。
看到这里,不禁有人会问:万一有内核进程或模块一直占用某段逻辑地址空间不释放,怎么办?若真的出现的这种情况,则内核的高端内存地址空间越来越紧张,若都被占用不释放,则没有建立映射到物理内存都无法访问了。
② Linux 内核的内存管理 - 概念
Concepts overview — The Linux Kernel documentation
Linux中的内存管理是一个复杂的系统,经过多年的发展,它包含越来越多的功能,以支持从 MMU-less microcontrollers 到 supercomputers 的各种系统。
没有MMU内存管理的系统被称为 nommu ,它值得写一份专门的文档进行描述。
尽管有些概念是相同的,这里我们假设MMU可用,CPU可以将虚拟地址转换为物理地址。
计算机系统中的物理内存是有限资源,即便支持内存热插拔,其可以安装的内存也有限的。物理内存不一定必须是连续的;它可以作为一组不同的地址范围被访问。此外,不同的CPU架构,甚至同架构的不同实现对如何定义这些地址范围都是不同的。
这使得直接处理物理内存异常复杂,为了避免这种复杂性,开发了 虚拟内存 (virtual memory) 的概念。
虚拟内存从应用软件中抽象出物理内存的细节,只允许在物理内存中保留需要的信息 (demand paging) ,并提供一种机制来保护和控制进程之间的数据共享。
通过虚拟内存,每次内存访问都访问一个 虚拟地址 。当CPU对从系统内存读取(或写入)的指令进行解码时,它将该指令中编码的虚拟地址转换为内存控制器可以理解的物理地址。
物理内存被切分为 页帧 page frames 或 页 pages 。页的大小是基于架构的。一些架构允许从几个支持的值中选择页大小;此选择在内核编译时设置到内核配置。
每个物理内存页都可以映射为一个或多个 虚拟页(virtual pages) 。映射关系描述在 页表(page tables) 中,页表将程序使用的虚拟地址转换为物理内存地址。页表以层次结构组织。
最底层的表包含软件使用的实际内存页的物理地址。较高层的表包含较低层表页的物理地址。顶层表的指针驻留在寄存器中。
当CPU进行地址转换的时候,它使用寄存器访问顶级页表。
虚拟地址的高位,用于顶级页表的条目索引。然后,通过该条目访问下级,下级的虚拟地址位又作为其下下级页表的索引。虚拟地址的最低位定义实际页内的偏移量。
地址转换需要多次内存访问,而内存访问相对于CPU速度来说比较慢。为了避免在地址转换上花费宝贵的处理器周期,CPU维护着一个称为 TLB (Translation Lookaside Buffer)的用于地址转换缓存(cache)。通常TLB是非常稀缺的资源,需要大内存工作应用程序会因为TLB未命中而影响性能。
很多现代CPU架构允许页表的高层直接映射到内存页。例如,x86架构,可以通过二级、三级页表的条目映射2M甚至1G内存页。在Linux中,这些内存页称为 大页 (Huge) 。大页的使用显着降低了TLB的压力,提高了TLB命中率,从而提高了系统的整体性能。
Linux提供两种机制开启使用大页映射物理内存。
第一个是 HugeTLB 文件系统,即 hugetlbfs 。它是一个伪文件系统,使用RAM作为其存储。在此文件系统中创建的文件,数据驻留在内存中,并使用大页进行映射。
关于 HugeTLB Pages
另一个被称为 THP (Transparent HugePages) ,后出的开启大页映射物理内存的机制。
与 hugetlbfs 不同,hugetlbfs要求用户和/或系统管理员配置系统内存的哪些部分应该并可以被大页映射;THP透明地管理这些映射并获取名称。
关于 Transparent Hugepage Support
通常,硬件对不同物理内存范围的访问方式有所限制。某些情况下,设备不能对所有可寻址内存执行DMA。在其他情况下,物理内存的大小超过虚拟内存的最大可寻址大小,需要采取特殊措施来访问部分内存。还有些情况,物理内存的尺寸超过了虚拟内存的最大可寻址尺寸,需要采取特殊措施来访问部分内存。
Linux根据内存页的使用情况,将其组合为多个 zones 。比如, ZONE_DMA 包含设备用于DMA的内存, ZONE_HIGHMEM 包含未永久映射到内核地址空间的内存, ZONE_NORMAL 包含正常寻址内存页。
内存zones的实际层次架构取决于硬件,因为并非所有架构都定义了所有的zones,不同平台对DMA的要求也不同。
多处理器机器很多基于 NUMA (Non-Uniform Memory Access system - 非统一内存访问系统 )架构。 在这样的系统中,根据与处理器的“距离”,内存被安排成具有不同访问延迟的 banks 。每个 bank 被称为一个 node ,Linux为每个 node 构造一个独立的内存管理子系统。 Node 有自己的zones集合、free&used页面列表,以及各种统计计数器。
What is NUMA?
NUMA Memory Policy
物理内存易失,将数据放入内存的常见情况是读取文件。读取文件时,数据会放入 页面缓存(page cache) ,可以在再次读取时避免耗时的磁盘访问。同样,写文件时,数据也会被放入 页面缓存 ,并最终进入存储设备。被写入的页被标记为 脏页(dirty page) ,当Linux决定将其重用时,它会将更新的数据同步到设备上的文件。
匿名内存 anonymous memory 或 匿名映射 anonymous mappings 表示没有后置文件系统的内存。这些映射是为程序的stack和heap隐式创建的,或调用mmap(2)显式创建的。通常,匿名映射只定义允许程序访问的虚拟内存区域。读,会创建一个页表条目,该条目引用一个填充有零的特殊物理页。写,则分配一个常规物理页来保存写入数据。该页将被标记为脏页,如果内核决定重用该页,则脏页将被交换出去 swapped out 。
纵贯整个系统生命周期,物理页可用于存储不同类型的数据。它可以是内核内部数据结构、设备驱动DMA缓冲区、读取自文件系统的数据、用户空间进程分配的内存等。
根据内存页使用情况,Linux内存管理会区别处理。可以随时释放的页面称为 可回收(reclaimable) 页面,因为它们把数据缓存到了其他地方(比如,硬盘),或者被swap out到硬盘上。
可回收页最值得注意的是 页面缓存 和 匿名页面 。
在大多数情况下,存放内部内核数据的页,和用作DMA缓冲区的页无法重用,它们将保持现状直到用户释放。这样的被称为 不可回收页(unreclaimable) 。
然而,在特定情况下,即便是内核数据结构占用的页面也会被回收。
例如,文件系统元数据的缓存(in-memory)可以从存储设备中重新读取,因此,当系统存在内存压力时,可以从主内存中丢弃它们。
释放可回收物理内存页并重新调整其用途的过程称为 (surprise!) reclaim 。
Linux支持异步或同步回收页,取决于系统的状态。
当系统负载不高时,大部分内存是空闲的,可以立即从空闲页得到分配。
当系统负载提升后,空闲页减少,当达到某个阈值( low watermark )时,内存分配请求将唤醒 kswapd 守护进程。它将以异步的方式扫描内存页。如果内存页中的数据在其他地方也有,则释放这些内存页;或者退出内存到后置存储设备(关联 脏页 )。
随着内存使用量进一步增加,并达到另一个阈值- min watermark -将触发回收。这种情况下,分配将暂停,直到回收到足够的内存页。
当系统运行时,任务分配并释放内存,内存变得碎片化。
虽然使用虚拟内存可以将分散的物理页表示为虚拟连续范围,但有时需要分配大的连续的物理内存。这种需求可能会提升。例如,当设备驱动需要一个大的DMA缓冲区时,或当THP分配一个大页时。
内存地址压缩(compaction ) 解决了碎片问题。
该机制将占用的页从内存zone的下部移动到上部的空闲页。压缩扫描完成后,zone开始处的空闲页就并在一起了,分配较大的连续物理内存就可行了。
与 reclaim 类似, compaction 可以在 kcompactd守护进程中异步进行,也可以作为内存分配请求的结果同步进行。
在存在负载的机器上,内存可能会耗尽,内核无法回收到足够的内存以继续运行。
为了保障系统的其余部分,引入了 OOM killer 。
OOM killer 选择牺牲一个任务来保障系统的总体健康。选定的任务被killed,以期望在它退出后释放足够的内存以继续正常的操作。
③ Linux 怎么获得分配内存的起始地址
Linux内核运行在X86机器的物理内存管理使用简单平坦内存模型,每个用户进程内存(虚拟内存)地址范围为从0到TASK_SIZE字节,超过此内存的限制不能被用户访问。用户进程被分为几个逻辑段,成为虚拟内存区域,内核跟踪和管理用户进程的虚拟内存区域提供适当的内存管理和内存保护处理。 do_brk()是一个内核函数,用于间接调用管理进程的内存堆的增加和缩减 (brk),它是一个mmap(2)系统调用的简化版本,只处理匿名映射(如未初始化数据)。 do_brk()改变进程的地址空间。地址是代表数据段结束的一个指针(事实上是进程的堆区域)。 do_brk()的参数是一个绝对逻辑地址,这个地址代表地址空间新的结尾。更实际地说,我们在编写用户程序的时候从来就不应该使用这个函数。使用这个函数的用户程序就不能再使用malloc(),这是一个大问题,因为标注库的许多部分依赖于malloc()。 如果在用户程序中使用do_brk()可能会导致难以发现的程序崩溃。 do_brk(addr, len)函数给从addr到addr+len建立虚拟内存区vm_area_struct(该区的起始地址为addr;结束地址为addr+len),该虚拟内存区作为进程的堆来使用。 malloc将从此区域获取内存空间(虚拟内存), free()将会把malloc()获取的虚拟空间释放掉(归还到该进程的堆的空闲空间中去)
④ 如何查看Linux内存中的程序所有堆的地址
linux 下面查看内存有多种渠道,比如通过命令 ps ,top,free 等,比如通过/proc系统,一般需要比较详细和精确地知道整机内存/某个进程内存的使用情况,最好通过/proc 系统,下面介绍/proc系统下内存相关的几个文件
单个进程的内存查看 cat /proc/[pid] 下面有几个文件: maps , smaps, status
maps 文件可以查看某个进程的代码段、栈区、堆区、动态库、内核区对应的虚拟地址,如果你还不了解linux进程的内存空间,可以参考这里。
下图是maps文件内存示例
Develop>cat /proc/self/maps
00400000-0040b000 r-xp 00000000 fd:00 48 /mnt/cf/orig/root/bin/cat
0060a000-0060b000 r--p 0000a000 fd:00 48 /mnt/cf/orig/root/bin/cat
0060b000-0060c000 rw-p 0000b000 fd:00 48 /mnt/cf/orig/root/bin/cat 代码段
0060c000-0062d000 rw-p 00000000 00:00 0 [heap] 堆区
7f1fff43b000-7f1fff5d4000 r-xp 00000000 fd:00 861 /mnt/cf/orig/root/lib64/libc-2.15.so
7f1fff5d4000-7f1fff7d3000 ---p 00199000 fd:00 861 /mnt/cf/orig/root/lib64/libc-2.15.so
7f1fff7d3000-7f1fff7d7000 r--p 00198000 fd:00 861 /mnt/cf/orig/root/lib64/libc-2.15.so
7f1fff7d7000-7f1fff7d9000 rw-p 0019c000 fd:00 861 /mnt/cf/orig/root/lib64/libc-2.15.so
7f1fff7d9000-7f1fff7dd000 rw-p 00000000 00:00 0
7f1fff7dd000-7f1fff7fe000 r-xp 00000000 fd:00 2554 /mnt/cf/orig/root/lib64/ld-2.15.so
7f1fff9f9000-7f1fff9fd000 rw-p 00000000 00:00 0
7f1fff9fd000-7f1fff9fe000 r--p 00020000 fd:00 2554 /mnt/cf/orig/root/lib64/ld-2.15.so
7f1fff9fe000-7f1fff9ff000 rw-p 00021000 fd:00 2554 /mnt/cf/orig/root/lib64/ld-2.15.so
7f1fff9ff000-7f1fffa00000 rw-p 00000000 00:00 0
7fff443de000-7fff443ff000 rw-p 00000000 00:00 0 [stack] 用户态栈区
7fff443ff000-7fff44400000 r-xp 00000000 00:00 0 [vdso]
ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall] 内核区
有时候可以通过不断查看某个进程的maps文件,通过查看其虚拟内存(堆区)是否不停增长来简单判断进程是否发生了内存溢出。
maps文件只能显示简单的分区,smap文件可以显示每个分区的更详细的内存占用数据
下图是smaps文件内存示例, 实际显示内容会将每一个区都显示出来,下面我只拷贝了代码段和堆区,
每一个区显示的内容项目是一样的,smaps文件各项含义可以参考这里
Develop>cat /proc/self/smaps
00400000-0040b000 r-xp 00000000 fd:00 48 /mnt/cf/orig/root/bin/cat
Size: 44 kB 虚拟内存大小
Rss: 28 kB 实际使用物理内存大小
Pss: 28 kB
Shared_Clean: 0 kB 页面被改,则是dirty,否则是clean,页面引用计数>1,是shared,否则是private
Shared_Dirty: 0 kB
Private_Clean: 28 kB
Private_Dirty: 0 kB
Referenced: 28 kB
Anonymous: 0 kB
AnonHugePages: 0 kB
Swap: 0 kB 处于交换区的页面大小
KernelPageSize: 4 kB 操作系统一个页面大小
MMUPageSize: 4 kB 体系结构MMU一个页面大小
Locked: 0 kB
0060c000-0062d000 rw-p 00000000 00:00 0 [heap]
Size: 132 kB
Rss: 8 kB
Pss: 8 kB
Shared_Clean: 0 kB
Shared_Dirty: 0 kB
Private_Clean: 0 kB
Private_Dirty: 8 kB
Referenced: 8 kB
Anonymous: 8 kB
AnonHugePages: 0 kB
Swap: 0 kB
KernelPageSize: 4 kB
MMUPageSize: 4 kB
Locked: 0 kB
下图是status文件内存示例, 加粗部分是内存相关的统计,
Develop>cat /proc/24475/status
Name: netio 可执行程序的名字
State: R (running) 任务状态,运行/睡眠/僵死
Tgid: 24475 线程组号
Pid: 24475 进程id
PPid: 19635 父进程id
TracerPid: 0
Uid: 0 0 0 0
Gid: 0 0 0 0
FDSize: 256 该进程最大文件描述符个数
Groups: 0
VmPeak: 6330708 kB 内存使用峰值
VmSize: 268876 kB 进程虚拟地址空间大小
VmLck: 0 kB 进程锁住的物理内存大小,锁住的物理内存无法交换到硬盘
VmHWM: 16656 kB
VmRSS: 11420 kB 进程正在使用的物理内存大小
VmData: 230844 kB 进程数据段大小
VmStk: 136 kB 进程用户态栈大小
VmExe: 760 kB 进程代码段大小
VmLib: 7772 kB 进程使用的库映射到虚拟内存空间的大小
VmPTE: 120 kB 进程页表大小
VmSwap: 0 kB
Threads: 5
SigQ: 0/63346
SigPnd: 0000000000000000
ShdPnd: 0000000000000000
SigBlk: 0000000000000000
SigIgn: 0000000001000000
SigCgt: 0000000180000000
CapInh: 0000000000000000
CapPrm: ffffffffffffffff
CapEff: ffffffffffffffff
CapBnd: ffffffffffffffff
Cpus_allowed: 01
Cpus_allowed_list: 0
Mems_allowed: 01
Mems_allowed_list: 0
voluntary_ctxt_switches: 201
nonvoluntary_ctxt_switches: 909
可以看到,linux下内存占用是一个比较复杂的概念,不能
简单通过一个单一指标就判断某个程序“内存消耗”大小,原因有下面2点:
进程所申请的内存不一定真正会被用到(malloc或mmap的实现)
真正用到了的内存也不一定是只有该进程自己在用 (比如动态共享库)
关于内存的使用分析及本文几个命令的说明也可以参考这里
下面是查看整机内存使用情况的文件 /proc/meminfo
Develop>cat /proc/meminfo
MemTotal: 8112280 kB 所有可用RAM大小 (即物理内存减去一些预留位和内核的二进制代码大小)
MemFree: 4188636 kB LowFree与HighFree的总和,被系统留着未使用的内存
Buffers: 34728 kB 用来给文件做缓冲大小
Cached: 289740 kB 被高速缓冲存储器(cache memory)用的内存的大小
(等于 diskcache minus SwapCache )
SwapCached: 0 kB 被高速缓冲存储器(cache memory)用的交换空间的大小
已经被交换出来的内存,但仍然被存放在swapfile中。
用来在需要的时候很快的被替换而不需要再次打开I/O端口
Active: 435240 kB 在活跃使用中的缓冲或高速缓冲存储器页面文件的大小,
除非非常必要否则不会被移作他用
Inactive: 231512 kB 在不经常使用中的缓冲或高速缓冲存储器页面文件的大小,可能被用于其他途径.
Active(anon): 361252 kB
Inactive(anon): 120688 kB
Active(file): 73988 kB
Inactive(file): 110824 kB
Unevictable: 0 kB
Mlocked: 0 kB
SwapTotal: 0 kB 交换空间的总大小
SwapFree: 0 kB 未被使用交换空间的大小
Dirty: 0 kB 等待被写回到磁盘的内存大小
Writeback: 0 kB 正在被写回到磁盘的内存大小
AnonPages: 348408 kB 未映射页的内存大小
Mapped: 33600 kB 已经被设备和文件等映射的大小
Shmem: 133536 kB
Slab: 55984 kB 内核数据结构缓存的大小,可以减少申请和释放内存带来的消耗
SReclaimable: 25028 kB 可收回Slab的大小
SUnreclaim: 30956 kB 不可收回Slab的大小(SUnreclaim+SReclaimable=Slab)
KernelStack: 1896 kB 内核栈区大小
PageTables: 8156 kB 管理内存分页页面的索引表的大小
NFS_Unstable: 0 kB 不稳定页表的大小
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 2483276 kB
Committed_AS: 1804104 kB
VmallocTotal: 34359738367 kB 可以vmalloc虚拟内存大小
VmallocUsed: 565680 kB 已经被使用的虚拟内存大小
VmallocChunk: 34359162876 kB
HardwareCorrupted: 0 kB
HugePages_Total: 1536 大页面数目
HugePages_Free: 0 空闲大页面数目
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB 大页面一页大小
DirectMap4k: 10240 kB
DirectMap2M: 8302592 kB
⑤ 内存管理:一文读懂Linux内存组织结构及页面布局
1、内存是什么?
1) 内存又称主存,是 CPU 能直接寻址的存储森郑空间,由半导体器件制成;
2) 内存的特点是存取速率快,断电一般不保存数据,非持久化设备;
2、内存的作用
1) 暂时存放 cpu 的运算数据
2) 硬盘等外部存储器交换的数据
3) 保障 cpu 计算机的稳定性和高性能
1、linux 内存地址空间 Linux 内存管理全貌
2、内存地址——用户态&内核态
3、内存地址——MMU 地址转换
4、内存地址——分段机制
1) 段选择符
更多Linux内核视频教程文档资料免费领取后台私信【 内核 】自行获取。
内核学习网站:
Linux内核源码/内存调优/文件系统/进程管理/设备驱动/网络协议栈-学习视频教程-腾讯课堂
2) 分段实现
5、内存地址——分页机制(32 位)
6、用户态地址空间
7、内核态地址空间
8、进程内存空间
内存管理算法 ——对讨厌自己管理内存的人来说是天赐的礼物
1、内存碎片
1) 基本原理
2) 如何避免内存碎片
2、伙伴系统算法——组织结构
1) 概念
2) 外部碎片
3、伙伴系统算法——申请和回收
1) 申请算法
2) 回收算法
3) 条件
4、如何分配 4M 以上内存?
1) 为何限制大旦春盯块内存分配
2) 内核中获取 4M 以上大内存的方法
5、伙伴系统——反碎片机制
1) 不可移动页
2) 可回收页
6、slab 算法——基本原理
1) 基本概念
2) 内部碎片
7、slab 分配器的结构
详细参考:
经典|图解Linux内存性能优化核心思想
8、slab 高速缓存
1) 普通高速缓存
2) 专用高速缓存
9、内核态内存池
1) 基本原理
2) 内核 API
10、用户态内存池
1) C++ 实例
11、DMA 内存
1) 什么是 DMA
2) DMA 信号
out of memory 的时代过去了吗?no,内存再充足也不可任性使用。
1、内存的使用场景
2、用户态内存分配函数
a) 如果当前连续内存块足够 realloc 的话,只是将 p 所指向的空间扩大,并返回模和 p 的指针地址。这个时候 q 和 p 指向的地址是一样的
b) 如果当前连续内存块不够长度,再找一个足够长的地方,分配一块新的内存,q,并将 p 指向的内容 到 q,返回 q。并将 p 所指向的内存空间删除
3、内核态内存分配函数
4、malloc 申请内存
5、缺页异常
6、用户进程访问内存分析
7、共享内存
1) 原理
2) shm 接口
1、C 内存泄露
2、C 野指针
3、C 资源访问冲突
4、STL 迭代器失效
错误示例:删除当前迭代器,迭代器会失效
正确示例:迭代器 erase 时,需保存下一个迭代器
5、C++ 11 智能指针
(1)原理分析:
(2)数据结构:
(3)使用方法:
6、C++ 11 更小更快更安全
六、 如何查看内存
可以通过 cat /proc/slabinfo 命令查看
可以通过 /proc/sys/vm/drop_caches来释放