当前位置:首页 » 操作系统 » 去量化算法

去量化算法

发布时间: 2023-08-09 16:14:58

1. 一个算法的‘计算量’该如何量化

这问题提的好。衡量算法开销通常使用O()运算符由于同一个算法运行于不同的机器上所耗费的实际时间是不同的,所以不能使用实际时间单位衡量算法运行效率,而应使用逻辑单位。描述算法复杂度的参数为算法的输入数据规模,通常用n来表示,那么算法的复杂度可表示为一个关于n的函数。通常最常用的描述算法复杂度的符号为O符号,即将复杂度表示为O(f(n))。其中f(n)用函数形式描述算法执行命令条数与输入规模n的关系,而O()起到估算化简的作用。比如某个算法经过逻辑分析后,其指令数可表示为f(n)=8n^2+10n+500,那么可以使用O(f(n))来简化其表达,O()符号运算性质有多条,总体来说就是保留增长率最高的项且忽略常数系数,上面的表达式化简结果为O(n^2)。当然O()符号不能完美描述算法开销,因为它忽略了常数的影响,当某些项前的常数系数非常非常大时,会对算法复杂度的判断造成误差,这就要具体问题具体分析了。下面简单说一下具体如何分析。for (i = 0;ik *= i;}这段代码每次循环中执行一次乘法两次赋值(假定乘法使用单周期乘法器实现),循环开始执行一次赋值,那么共计执行指令数3n+1,即复杂度为O(n)。for (i = 0;ifor (j = 0;jk += i * j;}循环嵌套时,内层循环执行3n+1条指令,外层循环n次,共n*(3n+1)+1=3n^2 + n +1条指令,即O(n^2)。

2. 机器学习一般常用的算法有哪些

机器学习是人工智能的核心技术,是学习人工智能必不可少的环节。机器学习中有很多算法,能够解决很多以前难以企的问题,机器学习中涉及到的算法有不少,下面小编就给大家普及一下这些算法。

一、线性回归

一般来说,线性回归是统计学和机器学习中最知名和最易理解的算法之一。这一算法中我们可以用来预测建模,而预测建模主要关注最小化模型误差或者尽可能作出最准确的预测,以可解释性为代价。我们将借用、重用包括统计学在内的很多不同领域的算法,并将其用于这些目的。当然我们可以使用不同的技术从数据中学习线性回归模型,例如用于普通最小二乘法和梯度下降优化的线性代数解。就目前而言,线性回归已经存在了200多年,并得到了广泛研究。使用这种技术的一些经验是尽可能去除非常相似(相关)的变量,并去除噪音。这是一种快速、简单的技术。

二、Logistic 回归

它是解决二分类问题的首选方法。Logistic 回归与线性回归相似,目标都是找到每个输入变量的权重,即系数值。与线性回归不同的是,Logistic 回归对输出的预测使用被称为 logistic 函数的非线性函数进行变换。logistic 函数看起来像一个大的S,并且可以将任何值转换到0到1的区间内。这非常实用,因为我们可以规定logistic函数的输出值是0和1并预测类别值。像线性回归一样,Logistic 回归在删除与输出变量无关的属性以及非常相似的属性时效果更好。它是一个快速的学习模型,并且对于二分类问题非常有效。

三、线性判别分析(LDA)

在前面我们介绍的Logistic 回归是一种分类算法,传统上,它仅限于只有两类的分类问题。而LDA的表示非常简单直接。它由数据的统计属性构成,对每个类别进行计算。单个输入变量的 LDA包括两个,第一就是每个类别的平均值,第二就是所有类别的方差。而在线性判别分析,进行预测的方法是计算每个类别的判别值并对具备最大值的类别进行预测。该技术假设数据呈高斯分布,因此最好预先从数据中删除异常值。这是处理分类预测建模问题的一种简单而强大的方法。

四、决策树

决策树是预测建模机器学习的一种重要算法。决策树模型的表示是一个二叉树。这是算法和数据结构中的二叉树,没什么特别的。每个节点代表一个单独的输入变量x和该变量上的一个分割点。而决策树的叶节点包含一个用于预测的输出变量y。通过遍历该树的分割点,直到到达一个叶节点并输出该节点的类别值就可以作出预测。当然决策树的有点就是决策树学习速度和预测速度都很快。它们还可以解决大量问题,并且不需要对数据做特别准备。

五、朴素贝叶斯

其实朴素贝叶斯是一个简单但是很强大的预测建模算法。而这个模型由两种概率组成,这两种概率都可以直接从训练数据中计算出来。第一种就是每个类别的概率,第二种就是给定每个 x 的值,每个类别的条件概率。一旦计算出来,概率模型可用于使用贝叶斯定理对新数据进行预测。当我们的数据是实值时,通常假设一个高斯分布,这样我们可以简单的估计这些概率。而朴素贝叶斯之所以是朴素的,是因为它假设每个输入变量是独立的。这是一个强大的假设,真实的数据并非如此,但是,该技术在大量复杂问题上非常有用。所以说,朴素贝叶斯是一个十分实用的功能。

六、K近邻算法

K近邻算法简称KNN算法,KNN 算法非常简单且有效。KNN的模型表示是整个训练数据集。KNN算法在整个训练集中搜索K个最相似实例(近邻)并汇总这K个实例的输出变量,以预测新数据点。对于回归问题,这可能是平均输出变量,对于分类问题,这可能是众数类别值。而其中的诀窍在于如何确定数据实例间的相似性。如果属性的度量单位相同,那么最简单的技术是使用欧几里得距离,我们可以根据每个输入变量之间的差值直接计算出来其数值。当然,KNN需要大量内存或空间来存储所有数据,但是只有在需要预测时才执行计算。我们还可以随时更新和管理训练实例,以保持预测的准确性。

七、Boosting 和 AdaBoost

首先,Boosting 是一种集成技术,它试图集成一些弱分类器来创建一个强分类器。这通过从训练数据中构建一个模型,然后创建第二个模型来尝试纠正第一个模型的错误来完成。一直添加模型直到能够完美预测训练集,或添加的模型数量已经达到最大数量。而AdaBoost 是第一个为二分类开发的真正成功的 boosting 算法。这是理解 boosting 的最佳起点。现代 boosting 方法建立在 AdaBoost 之上,最显着的是随机梯度提升。当然,AdaBoost 与短决策树一起使用。在第一个决策树创建之后,利用每个训练实例上树的性能来衡量下一个决策树应该对每个训练实例付出多少注意力。难以预测的训练数据被分配更多权重,而容易预测的数据分配的权重较少。依次创建模型,每一个模型在训练实例上更新权重,影响序列中下一个决策树的学习。在所有决策树建立之后,对新数据进行预测,并且通过每个决策树在训练数据上的精确度评估其性能。所以说,由于在纠正算法错误上投入了太多注意力,所以具备已删除异常值的干净数据十分重要。

八、学习向量量化算法(简称 LVQ)

学习向量量化也是机器学习其中的一个算法。可能大家不知道的是,K近邻算法的一个缺点是我们需要遍历整个训练数据集。学习向量量化算法(简称 LVQ)是一种人工神经网络算法,它允许你选择训练实例的数量,并精确地学习这些实例应该是什么样的。而学习向量量化的表示是码本向量的集合。这些是在开始时随机选择的,并逐渐调整以在学习算法的多次迭代中最好地总结训练数据集。在学习之后,码本向量可用于预测。最相似的近邻通过计算每个码本向量和新数据实例之间的距离找到。然后返回最佳匹配单元的类别值或作为预测。如果大家重新调整数据,使其具有相同的范围,就可以获得最佳结果。当然,如果大家发现KNN在大家数据集上达到很好的结果,请尝试用LVQ减少存储整个训练数据集的内存要求

3. 量化分析方法有几种

量化分析法是对通过定性风险分析排出优先顺序的风险进行量化分析。尽管有经验的风险经理有时在风险识别之后直接进行定量分析,但定量风险分析一般在定性风险分析之后进行。定量风险分析一般应当在确定风险应对计划时再次进行,以确定项目总风险是否已经减少到满意。重复进行定量风险分析反映出来的趋势可以指出需要增加还是减少风险管理措施,它是风险应对计划的一项依据,并作为风险监测和控制的组成部分。
(一)技术分析法

技术分析法的主要目标是通过对市场的历史数据的研究,特别是对价格和交易量的研究,来预测价格的变动方向。技术分析法通常分析市场价格图标,因此技术分析师被称为“图表分析专家”。目的在于识别价格模式和市场趋势,从而试图预测未来的变化趋势。技术分析法的原理包括市场行为包容一切信息(技术分析法旨在弄明白投资者对于此类信息的反应),价格以趋势方式演变,历史价格趋于重演,并且投资者具有重蹈先前投资者覆辙的特征。

(二)基本面分析法

基本面分析法重点分析经济状态、利率、通货膨胀、公司收益、公司资产负债表、以及中央银行和政府的相关政策。

当基本面分析法应用于选股时,通常会结合对经济整体方向自上而下的分析(宏观),从而形成对于市场、行业、利率水平以及汇率水平的观点,并加之运用自下而上的方法对于某只股票进行分析(微观)。自下而上的分析往往会忽略在国别以及产业方面的整体配置而关注于单只股票的选择。根据投资理念和投资过程,自上而下的分析决定了国别和行业的配置;同时,自下而上的分析则决定了某一国家和行业内部的投资配置。

(三)量化分析法

量化(定量)分析法,正如其名,包括运用量化方法、统计模型、数学公式以及算法来预测市场走向。在战术型资产配置中一个常见的方法便是使用多因子模型,通过分析估值、动量指标、风险水平、市场情绪、利率、收益率曲线等因素,从而推导出涵盖股票、债券和外汇市场等不同市场的买入和卖出信号。虽然有一部分战术型资产配置策略完全是量化模型驱动的,但将量化分析和基本面分析相结合将更具活力,因为这种结合可以将量化信号融合入基本面分析的过程中。

量化分析的不足在于该分析很大程度上是以观测到的市场价格的历史关联性和走势为基础。如果上述关联性和走势由于市场反转或市场承压而引起历史关联性发生变化而失效,那么量化模型可能会在预测拐点过程中失效。量化模型往往也会在出现政权更替或市场结构化改变时失效。

热点内容
宣威云服务器存储 发布:2025-03-11 10:06:22 浏览:557
手游编程培训 发布:2025-03-11 09:43:38 浏览:510
php获取浏览器 发布:2025-03-11 09:03:31 浏览:877
安卓常驻后台需要什么权限 发布:2025-03-11 08:58:26 浏览:181
绿源电动车威牛是什么配置 发布:2025-03-11 08:47:34 浏览:10
wps加密文件密码忘记 发布:2025-03-11 08:36:49 浏览:47
可编程渲染管线 发布:2025-03-11 08:35:23 浏览:455
一般人手机设置密码会是什么 发布:2025-03-11 08:27:19 浏览:416
缓存电视剧软件 发布:2025-03-11 08:26:26 浏览:135
安卓怎么下载ios14 发布:2025-03-11 08:25:50 浏览:567