当前位置:首页 » 操作系统 » lfu置换算法

lfu置换算法

发布时间: 2023-08-08 13:28:09

A. 操作系统课程设计,用C#实现内存页面的置换。实现算法间比较

页面置换算法

一.题目要求:

通过实现页面置换算法的FIFO和LRU两种算法,理解进程运行时系统是怎样选择换出页面的,对于两种不同的算法各自的优缺点是哪些。

要求设计主界面以灵活选择某算法,且以下算法都要实现 1) 最佳置换算法(OPT):将以后永不使用的或许是在最长(未来)时间内不再被访问的页面换出。

2) 先进先出算法(FIFO):淘汰最先进入内存的页面,即选择在内存中驻留时间最久的页面予以淘汰。

3) 最近最久未使用算法(LRU):淘汰最近最久未被使用的页面。 4) 最不经常使用算法(LFU) 二.实验目的:

1、用C语言编写OPT、FIFO、LRU,LFU四种置换算法。 2、熟悉内存分页管理策略。 3、了解页面置换的算法。 4、掌握一般常用的调度算法。 5、根据方案使算法得以模拟实现。 6、锻炼知识的运用能力和实践能力。 三、设计要求

1、编写算法,实现页面置换算法FIFO、LRU;

2、针对内存地址引用串,运行页面置换算法进行页面置换; 3、算法所需的各种参数由输入产生(手工输入或者随机数产生); 4、输出内存驻留的页面集合,页错误次数以及页错误率;

四.相关知识:

1.虚拟存储器的引入:

局部性原理:程序在执行时在一较短时间内仅限于某个部分;相应的,它所访问的存储空间也局限于某个区域,它主要表现在以下两个方面:时间局限性和空间局限性。

2.虚拟存储器的定义:

虚拟存储器是只具有请求调入功能和置换功能,能从逻辑上对内存容量进行扩充的一种存储器系统。

3.虚拟存储器的实现方式:

分页请求系统,它是在分页系统的基础上,增加了请求调页功能、页面置换功能所形成的页面形式虚拟存储系统。

请求分段系统,它是在分段系统的基础上,增加了请求调段及分段置换功能后,所形成的段式虚拟存储系统。

4.页面分配:

平均分配算法,是将系统中所有可供分配的物理块,平均分配给各个进程。 按比例分配算法,根据进程的大小按比例分配物理块。

考虑优先的分配算法,把内存中可供分配的所有物理块分成两部分:一部分按比例地分配给各进程;另一部分则根据个进程的优先权,适当的增加其相应份额后,分配给各进程。

5.页面置换算法:

常用的页面置换算法有OPT、FIFO、LRU、Clock、LFU、PBA等。 五、设计说明

1、采用数组页面的页号

2、FIFO算法,选择在内存中驻留时间最久的页面予以淘汰;

分配n个物理块给进程,运行时先把前n个不同页面一起装入内存,然后再从后面逐一比较,输出页面及页错误数和页错误率。

3、LRU算法,根据页面调入内存后的使用情况进行决策;

同样分配n个物理块给进程,前n个不同页面一起装入内存,后面步骤与前一算法类似。

选择置换算法,先输入所有页面号,为系统分配物理块,依次进行置换: 六.设计思想:

OPT基本思想:

是用一维数组page[pSIZE]存储页面号序列,memery[mSIZE]是存储装入物理块中的页面。数组next[mSIZE]记录物理块中对应页面的最后访问时间。每当发生缺页时,就从物理块中找出最后访问时间最大的页面,调出该页,换入所缺的页面。

FIFO基本思想:

是用队列存储内存中的页面,队列的特点是先进先出,与该算法是一致的,所以每当发生缺页时,就从队头删除一页,而从队尾加入缺页。或者借助辅助数组time[mSIZE]记录物理块中对应页面的进入时间,每次需要置换时换出进入时间最小的页面。

LRU基本思想:

是用一维数组page[pSIZE]存储页面号序列,memery[mSIZE]是存储装入物理块中的页面。数组flag[10]标记页面的访问时间。每当使用页面时,刷新访问时间。发生缺页时,就从物理块中页面标记最小的一页,调出该页,换入所缺的页面。 七.流程图:

如下页所示

六.运行结果: 1. 按任意键进行初始化:

2. 载入数据:

3. 进入置换算法选择界面:

4.运算中延迟操作:

5.三种算法演示结果:

B. 请分别给出三种不同的页面置换算法,并简要说明他们的优缺点

[fifo.rar]
-
操作系统中内存页面的先进先出的替换算法fifo
[先进先出页面算法程序.rar]
-
分别实现最佳置换算法(optimal)、先进先出(fifo)页面置换算法和最近最久未使用(LRU)置换算法,并给出各算法缺页次数和缺页率。
[0022.rar]
-
模拟分页式虚拟存储管理中硬件的地址转换和缺页中断,以及选择页面调度算法处理缺页中断
[Change.rar]
-
java实现操作系统的页面置换
其中包括
最佳置换算法(Optimal)、先进先出算法(First-in,
First-out)
、最近最久不用的页面置换算法(LeastRecently
Used
Replacement)三种算法的实现
[M_Management.rar]
-
操作系统中内存管理页面置换算法的模拟程序,采用的是LRU置换算法
[detail_of_44b0x_TCPIP.rar]
-
TCPIP
程序包加载到44b0x
的ADS1.2工程文件的说明书。说名了加载过程的细节和如何处理演示程序和代码。演示代码已经上传,大家可以搜索
[.rar]
-
java操作系统页面置换算法:
(1)进先出的算法(fifo)
(2)最近最少使用的算法(LRU)
(3)最佳淘汰算法(OPT)
(4)最少访问页面算法(LFU)
(注:由本人改成改进型Clock算法)
(5)最近最不经常使用算法(NUR)

C. 页面置换算法的常见的置换算法

最简单的页面置换算法是先入先出(FIFO)法。这种算法的实质是,总是选择在主存中停留时间最长(即最老)的一页置换,即先进入内存的页,先退出内存。理由是:最早调入内存的页,其不再被使用的可能性比刚调入内存的可能性大。建立一个FIFO队列,收容所有在内存中的页。被置换页面总是在队列头上进行。当一个页面被放入内存时,就把它插在队尾上。
这种算法只是在按线性顺序访问地址空间 时才是理想的,否则效率不高。因为那些常被访问的页,往往在主存中也停留得最久,结果它们因变“老”而不得不被置换出去。
FIFO的另一个缺点是,它有一种异常现象,即在增加存储块的情况下,反而使缺页中断率增加了。当然,导致这种异常现象的页面走向实际上是很少见的。
FIFO算法和OPT算法之间的主要差别是,FIFO算法利用页面进入内存后的时间长短作为置换依据,而OPT算法的依据是将来使用页面的时间。如果以最近的过去作为不久将来的近似,那么就可以把过去最长一段时间里不曾被使用的页面置换掉。它的实质是,当需要置换一页时,选择在之前一段时间里最久没有使用过的页面予以置换。这种算法就称为最久未使用算法(Least Recently Used,LRU)。
LRU算法是与每个页面最后使用的时间有关的。当必须置换一个页面时,LRU算法选择过去一段时间里最久未被使用的页面。
LRU算法是经常采用的页面置换算法,并被认为是相当好的,但是存在如何实现它的问题。LRU算法需要实际硬件的支持。其问题是怎么确定最后使用时间的顺序,对此有两种可行的办法:
1.计数器。最简单的情况是使每个页表项对应一个使用时间字段,并给CPU增加一个逻辑时钟或计数器。每次存储访问,该时钟都加1。每当访问一个页面时,时钟寄存器的内容就被复制到相应页表项的使用时间字段中。这样我们就可以始终保留着每个页面最后访问的“时间”。在置换页面时,选择该时间值最小的页面。这样做, 不仅要查页表,而且当页表改变时(因CPU调度)要 维护这个页表中的时间,还要考虑到时钟值溢出的问题。
2.栈。用一个栈保留页号。每当访问一个页面时,就把它从栈中取出放在栈顶上。这样一来,栈顶总是放有目前使用最多的页,而栈底放着目前最少使用的页。由于要从栈的中间移走一项,所以要用具有头尾指针的双向链连起来。在最坏的情况下,移走一页并把它放在栈顶上需要改动6个指针。每次修改都要有开销,但需要置换哪个页面却可直接得到,用不着查找,因为尾指针指向栈底,其中有被置换页。
因实现LRU算法必须有大量硬件支持,还需要一定的软件开销。所以实际实现的都是一种简单有效的LRU近似算法。
一种LRU近似算法是最近未使用算法(Not Recently Used,NUR)。它在存储分块表的每一表项中增加一个引用位,操作系统定期地将它们置为0。当某一页被访问时,由硬件将该位置1。过一段时间后,通过检查这些位可以确定哪些页使用过,哪些页自上次置0后还未使用过。就可把该位是0的页淘汰出去,因为在之前最近一段时间里它未被访问过。
4)Clock置换算法(LRU算法的近似实现)
5)最少使用(LFU)置换算法
在采用最少使用置换算法时,应为在内存中的每个页面设置一个移位寄存器,用来记录该页面被访问的频率。该置换算法选择在之前时期使用最少的页面作为淘汰页。由于存储器具有较高的访问速度,例如100 ns,在1 ms时间内可能对某页面连续访 问成千上万次,因此,通常不能直接利用计数器来记录某页被访问的次数,而是采用移位寄存器方式。每次访问某页时,便将该移位寄存器的最高位置1,再每隔一定时间(例如100 ns)右移一次。这样,在最近一段时间使用最少的页面将是∑Ri最小的页。
LFU置换算法的页面访问图与LRU置换算法的访问图完全相同;或者说,利用这样一套硬件既可实现LRU算法,又可实现LFU算法。应该指出,LFU算法并不能真正反映出页面的使用情况,因为在每一时间间隔内,只是用寄存器的一位来记录页的使用情况,因此,访问一次和访问10 000次是等效的。
6)工作集算法
7)工作集时钟算法
8)老化算法(非常类似LRU的有效算法)
9)NRU(最近未使用)算法
10)第二次机会算法
第二次机会算法的基本思想是与FIFO相同的,但是有所改进,避免把经常使用的页面置换出去。当选择置换页面时,检查它的访问位。如果是 0,就淘汰这页;如果访问位是1,就给它第二次机会,并选择下一个FIFO页面。当一个页面得到第二次机会时,它的访问位就清为0,它的到达时间就置为当前时间。如果该页在此期间被访问过,则访问位置1。这样给了第二次机会的页面将不被淘汰,直至所有其他页面被淘汰过(或者也给了第二次机会)。因此,如果一个页面经常使用,它的访问位总保持为1,它就从来不会被淘汰出去。
第二次机会算法可视为一个环形队列。用一个指针指示哪一页是下面要淘汰的。当需要一个 存储块时,指针就前进,直至找到访问位是0的页。随着指针的前进,把访问位就清为0。在最坏的情况下,所有的访问位都是1,指针要通过整个队列一周,每个页都给第二次机会。这时就退化成FIFO算法了。

D. 操作系统 页式管理中的置换算法 怎么看缺页

去年学过,现在记忆残缺,尽量回答
FIFO算法是先入先出算法吧,首先是有三个页面,所以一列只有三行
再者,根据先入先出的规则,后面读取的串替代内存中进来时间最久的串,若当前读取的串内存中已经有了,则内存中的页面不变
缺页就是没有重复的页面,即没有重复的页面共有10页,就缺页10次
LRU LFU就是看访问串前面或者后面会不会有使用到,具体哪个我忘了,把FIFO看明白了你就晓得了
FIFO:
7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1
7 7 7 2 2 2 2 4 4 4 0 0 0 0 0 0 0
空0 0 0 0 3 3 3 2 2 2 2 2 1 1 1 1
空空1 1 1 1 0 0 0 3 3 3 3 3 2 2 2
你的打错了吧
PS:我上面说缺页10页是随便举的例子,题目中的缺页数是12,缺页不是很好计算的么,就是没有内容重复的内存页,数一下就知道了,还不知道就留言我吧

热点内容
服务器关闭怎么补偿 发布:2025-03-12 01:01:26 浏览:333
c语言复数的四则运算 发布:2025-03-12 01:01:22 浏览:802
我的世界电脑版新的服务器 发布:2025-03-12 01:00:27 浏览:378
网站数据库设置 发布:2025-03-12 00:52:13 浏览:310
安卓是哪个企业 发布:2025-03-12 00:41:23 浏览:91
javascript还是php 发布:2025-03-12 00:41:12 浏览:697
微博抽奖算法 发布:2025-03-12 00:41:10 浏览:112
抖音的麦克风在哪里打开安卓版 发布:2025-03-12 00:35:15 浏览:122
压缩碳滤芯 发布:2025-03-12 00:21:11 浏览:418
php两个数组并集 发布:2025-03-12 00:15:00 浏览:339