当前位置:首页 » 操作系统 » 金7乐算法

金7乐算法

发布时间: 2023-08-08 00:14:42

⑴ 四川麻将血站到底10元的计算方法

血战到底是四川麻将的一种打法,其特点是:

一、公平
二、迅速
三、希望

公平说的是针对其他的打法,血战到底里只有点炮的人给钱,其余两家不用对此负责。极大地降低了联手作弊的可能。

迅速说的是运气在其中占到7成比例,若不想做大牌或者自摸,想和牌是非常快的。没有太多艰苦的等待。

希望说的是血战到底必须要决出三家胜利者才会终局,这样一来就给追求艺术麻将的人以希望,不至于心血被一个小P和给一下摧毁了。



规则:

1、血战到底为四人制,赢家联庄。

2、血战到底中只使用条万筒三种牌,其余剔除。只允许做两门牌或一色,出现流局时如果有人手头有三门牌,被称为“花猪”。按照其余各家最大牌面付钱,叫做“查花猪”。

3、血战到底中首先和牌的一家将牌扣倒,和张外露。剩余三家继续打牌,按相同程序操作,直到第三家和牌或流局时宣告终局。

4、流局时查花猪和查叫,检查是否听牌。未听牌家要按照听牌家最大可能牌面给钱,不用给和牌家。但花猪赔偿三家。

5、刮风下雨(可选)玩法:一旦发生明杠,引杠方给普通小和的钱,称为刮风。暗杠时,三家给两倍小和的钱,成为下雨。但是,如果最后刮风下雨方不听牌,要把风雨钱退出。

*呼叫转移:在有刮风下雨的玩法时,如果发生杠上炮,刮风下雨的钱转移到和牌家。抢杠则无刮风下雨一说。

6、番数计算:

(1)普通小和为底,计为A。
(2)有一杠则乘2,两杠乘4,余类推。
(3)碰碰和为2A
(4)小七对和清一色为4A(无混一色之说)
(5)全带么为2A
(6)龙七对(小七对中有四张一样)为8A,双龙七对为16A。
(7)杠上花、杠上炮在本身牌面上乘2。

7、为了不至于伤人太甚,建议封顶为4A,或者8A。如果不封顶的话,容易打出人命。例如:10块钱为底,三龙清七对为10*4(清一色)*4(小七对)*8(三龙)=1280元。

8、杠牌为顺杠,不是从牌尾。

9、最后四张牌有和必须和,否则同花猪论处!

10、买马(可选)

起牌完毕后,围观群众可以在牌尾任何取一张牌买马。按照牌面数字,根据东1南2西3北4确定买在哪一家上。

买中哪家,买马者和这家等同输赢。

马分死马活马,死马为固定注,而活马和玩家输赢完全一样。

马杀马:一局中有两匹以上的马,马之间互相杀,由于计算复杂,这里就不再解释了。

⑵ 密码技术的安全性表现在哪几方面求大神帮助

这个问题设计面积太广了!我就弄了些皮毛!希望能帮到你2.1 对称密码 对称密码技术也叫做单钥或常规密码技术,其包括分组密码技术和流密码技术这两个重要的分支。在公钥密码技术出现之前,它是惟一的加密类型。2.1.1 基本原理前不久,美国计算机安全专家又提出了一种新的安全框架,除机密性、完整性、可用性、真实性之外,又增加了实用性和占有性,认为这样才能解释各种网络安全问题。实用性是指信息加密密钥不可丢失(不是泄密),丢失了密钥的信息也就丢失了信息的实用性,成为垃圾。占有性是指存储信息的节点、磁盘等信息载体不被盗用,即对信息的占用权不能丧失。保护信息占有性的方法有使用版权、专利、商业秘密性,提供物理和逻辑的存取限制方法;维护和检查有关盗窃文件的审计记录、使用标签等。对于分析者来说,可以得到加密、解密算法和从不安全的信道上得到密文C,而不能得到的是通过安全信道传输的密钥K。这样,对称密码必须满足如下要求: ● 算法要足够强大。就是说,从截获的密文或某些已知明文密文对时,计算出密钥或明文是不可行的。● 不依赖于算法的保密,而依赖于密钥。这就是着名的Kerckhoff原则。● 密钥空间要足够大,且加密和解密算法适用于密钥空间所有的元素。这也是非对称密码技术必须满足的条件。除此之外,在实际运用中,发送方和接收方必须保证用安全的方法获得密钥的副本。2.1.2 分组密码分组密码(BlockCipher)是一个明文分组被作为一个整体来产生一个等长的密文分组密码,通常使用的是64bit的分组大小。当前使用的许多分组加密算法几乎都基于Feistel分组密码结构。2.1.2.1 基本原理 扩散(Diffusion)和扰乱(Confusion)是由香农引进描述任意密码系统的两个基本组成模块时提出的两个术语。这两种方法是为了挫败基于统计分析的密码破译。扩散,就是把明文的统计结构扩散消失到密文的长程统计特性中。做到这一点的方法是让明文的每个数字影响许多密文数字的取值,也就是说,每个密文数字被许多明文数字影响。其结果是在密文中各种字母的出现频率比在明文中更接近平均;双字母组合的出现频率也更接近平均。所有分组密码都包含从明文分组到密文分组的变换,具体如何变换则依赖于密钥。扩散机制使得明文和密文之间的统计关系尽量复杂,以便挫败推测密钥的尝试。扰乱试图使得密文的统计特性与加密密钥取值之间的关系尽量复杂,同样是为了挫败发现密钥的尝试。这样一来,即使攻击者掌握了密文的某些统计特性,由于密钥产生密文的方式非常复杂,攻击者也难于从中推测出密钥。要实现这个目的,可以使用一个复杂的替代算法,而一个简单的线性函数就起不到多少作用。2.1.2.2 常见的分组加密算法本节介绍经典的 “数据加密标准”(DataEncryptionStandard,DES)和抛弃了Feistel网络结构的 “高级加密算法”(AES),同时也简要介绍了其他常见的分组加密算法。1.数据加密标准DES1973年5月15日,美国国家标准局NBS(NationalBureauOfStandard,现在的美国国家标准与技术局——NIST)在联邦记录(Federal Register)上发布了一条通知,征求密码算法,用于在传输和存储期间保护数据。IBM提交了一个候选算法,它是由IBM内部开发的,名为LUCIFER。在美国国家安全局NSA (NationalSecurityAgency)的协助下完成了算法评估之后,1977年7月15日,NBS采纳了LUCIFER算法的修正版作为数据加密标准DES。1994年,NIST把联邦政府使用DES的有效期延长了5年,还建议把DES用于政府或军事机密信息防护以外的其他应用。DES是一种对二元数据进行加密的算法,将明文消息分成64bit(8B)一组进行加密。密文分组的长度也是64bit,没有数据扩展。DES使用“密钥”进行加密,从符号的角度来看,“密钥”的长度是8B(或64bit)。但是,由于某些原因,DES算法中每逢第8bit就被忽略,这造成密钥的实际大小变成56bit。DES的整个体制是公开的,系统的安全性完全依赖密钥的保密。DES算法主要包括:初始置换p,16轮迭代的乘积变换,逆初始置换ip-1以及16个密钥产生器。在DES加密算法的一般描述的左边部分,可以看到明文的处理经过了3个阶段:第一个阶段,64bit的明文经过一个初始置换Ⅲ后,比特重排产生经过置换的输出。第二个阶段,由同一个函数的16次循环构成,这个函数本身既有置换又有替代功能。最后一个循环(第16个)的输出由64bit组成,其输出的左边和右边两个部分经过交换后就得到预输出。最后,在第三阶段,预输出通过逆初始置换ip-l生成64bit的密文。除了初始置换和逆初始置换之外,DES具有严格的Feistel密码结构。56bit密钥的使用方式。密钥首先通过一个置换函数,接着于16个循环的每一个,都通过一个循环左移操作和一个置换操作的组合产生一个子密钥KI。对于每一个循环来说,置换函数是相同的,但由于密钥比特的重复移动,产生的子密钥并不相同。DES的解密和加密使用相同的算法,只是将子密钥的使用次序反过来。DES具有雪崩效应:明文或密钥的lbit的改变引起密文许多Bit的改变。如果密文的变化太小,就可能找到一种方法减小要搜索的明文和密钥空间。当密钥不变,明文产生lbit变化,在3次循环后,两个分组有21bit不同,而整个加密过程结束后,两个密文有34个位置不同。作为对比,明文不变,密钥发生lbit变化时,密文中有大约一半的Bit不同。因此,DES具有一种很强的雪崩效应,这是一个非常好的特性。DES的强度依赖于算法自身和其使用的56bit密钥。一种攻击利用DES算法的特点使分析密码成为可能。多年来,DES已经经历了无数次寻找和利用算法弱点的尝试,成了当今研究得最多的加密算法。即使这样,仍然没有人公开宣称成功地发现了DES的致命弱点。然而,密钥长度是更严峻的问题。DES的密钥空间为256,如假设仅一半的密钥空间需要搜索,则一台1us完成一次DES加密的机器需要1000年才能破译DES密钥。事实却没有这么乐观,早在1977年,Diffie和Hellman就设想有一种技术可以制造出具有100万个加密设备的并行机,其中的每一个设备都可以在1lls之内完成一次加密。这样平均搜索时间就减少到lOh。在1977年,这两位作者估计这种机器在当时约价值2000万美元。到1998年7月,EFF(Electronic FrontierFoundation)宣布攻破了DES算法,他们使用的是不到25万美元的特殊“DES破译机”,这种攻击只需要不到3天的时间。在已知密文/明文对时,密钥搜索攻击就是简单地搜索所有可能的密钥;如果没有已知的密文/明文对时,攻击者必须自己识别明文。这是一个有相当难度的工作。如果报文是以普通英语写成的,可以使用程序自动完成英语的识别。如果明文报文在加密之前做过压缩,那么识别工作就更加困难。如果报文是某种更一般的类型,如二进制文件,那么问题就更加难以自动化。因此,穷举搜索还需要一些辅助信息,这包括对预期明文的某种程度的了解和自动区分明文与乱码的某种手段。2.三重DES 三重DES(Triple-DES)是人们在发现DES密钥过短,易于受到蛮力攻击而提出的一种替代加密算法。三重DES最初由Tuchman提出,在1985年的ASNI标准X9.17中第一次针对金融应用进行了标准化。在1999年,三重DES合并入数据加密标准中。 三重DES使用3个密钥,执行3次DES算法,如下动画所示。加密过程为加密一解密一加密(EDE),可表述为如下的公式:C = EK3(DK2(EK1(M)))解密时按密钥相反次序进行同样的操作,表述为:M= DK1(EK2(DK3(C))) 其中,C表示密文,M表示明文,EK(X)表示使用密钥K对X进行加密,DK(X)表示使用密钥K对X进行解密。 为了避免三重DES使用3个密钥进行三阶段加密带来的密钥过长的缺点(56X3=168bit),Tuchman提出使用两个密钥的三重加密方法,这个方法只要求112bit密钥,即令其K1=K3:C = EK1(DK2(EK1(M))) 三重DES的第二阶段的解密并没有密码编码学上的意义。它的惟一优点是可以使用三重DES解密原来的单次DES加密的数据,即:K1=K2=K3。C=EK1(DKl(EKl(M)))=EKl(M)本答案参考于: http://bbs.xml.org.cn/dispbbs.asp?boardID=65&ID=69204

⑶ 黄金分割是什么

黄金分割点约等于0.618:1
是指分一线段为两部分,使得原来线段的长跟较长的那部分的比为黄金分割的点。线段上有两个这样的点。

利用线段上的两黄金分割点,可作出正五角星,正五边形。
2000多年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金分割。所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。而计算黄金分割最简单的方法,是计算斐波契数列1,1,2,3,5,8,13,21,...后二数之比2/3,3/5,4/8,8/13,13/21,...近似值的。
黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为"金法",17世纪欧洲的一位数学家,甚至称它为"各种算法中最可宝贵的算法"。这种算法在印度称之为"三率法"或"三数法则",也就是我们现在常说的比例方法。

其实有关"黄金分割",我国也有记载。虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。
因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为"黄金分割"。
把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现:
1/0.618=1.618
(1-0.618)/0.618=0.618
这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。

让我们首先从一个数列开始,它的前面几个数是:1、1、2、3、5、8、13、21、34、55、89、144…..这个数列的名字叫做"菲波那契数列",这些数被称为"菲波那契数"。特点是即除前两个数(数值为1)之外,每个数都是它前面两个数之和。

菲波那契数列与黄金分割有什么关系呢?经研究发现,相邻两个菲波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。即f(n)/f(n-1)-→0.618…。由于菲波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。但是当我们继续计算出后面更大的菲波那契数时,就会发现相邻两数之比确实是非常接近黄金分割比的。

一个很能说明问题的例子是五角星/正五边形。五角星是非常美丽的,我们的国旗上就有五颗,还有不少国家的国旗也用五角星,这是为什么?因为在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的。正五边形对角线连满后出现的所有三角形,都是黄金分割三角形。

由于五角星的顶角是36度,这样也可以得出黄金分割的数值为2Sin18
利用线段上的两黄金分割点,可作出正五角星,正五边形。
2000多年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金分割。所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。而计算黄金分割最简单的方法,是计算斐波契数列1,1,2,3,5,8,13,21,...后二数之比2/3,3/5,4/8,8/13,13/21,...近似值的。
黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为"金法",17世纪欧洲的一位数学家,甚至称它为"各种算法中最可宝贵的算法"。这种算法在印度称之为"三率法"或"三数法则",也就是我们现在常说的比例方法。

其实有关"黄金分割",我国也有记载。虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。
因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为"黄金分割"。
黄金分割〔Golden Section〕是一种数学上的比例关系。黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。应用时一般取1.618 ,就像圆周率在应用时取3.14一样。

发现历史
由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。

公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。

公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论着。

中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此着书立说。德国天文学家开普勒称黄金分割为神圣分割。

到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最着名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。

|..........a...........|

+-------------+--------+ -
| | | .
| | | .
| B | A | b
| | | .
| | | .
| | | .
+-------------+--------+ -

|......b......|..a-b...|
通常用希腊字母 表示这个值。

黄金分割奇妙之处,在于其比例与其倒数是一样的。例如:1.618的倒数是0.618,而1.618:1与1:0.618是一样的。
确切值为根号5+1/2
黄金分割数是无理数,前面的1024位为:

1.6180339887 4989484820 4586834365 6381177203 0917980576
2862135448 6227052604 6281890244 9707207204 1893911374
8475408807 5386891752 1266338622 2353693179 3180060766
7263544333 8908659593 9582905638 3226613199 2829026788
0675208766 8925017116 9620703222 1043216269 5486262963
1361443814 9758701220 3408058879 5445474924 6185695364
8644492410 4432077134 4947049565 8467885098 7433944221
2544877066 4780915884 6074998871 2400765217 0575179788
3416625624 9407589069 7040002812 1042762177 1117778053
1531714101 1704666599 1466979873 1761356006 7087480710
1317952368 9427521948 4353056783 0022878569 9782977834
7845878228 9110976250 0302696156 1700250464 3382437764
8610283831 2683303724 2926752631 392473 1671112115
8818638513 3162038400 5222165791 2866752946 5490681131
7159934323 5973494985 0904094762 1322298101 7261070596
1164562990 9816290555 2085247903 5240602017 2799747175
3427775927 7862561943 2082750513 1218156285 5122248093
9471234145 1702237358 0577278616 0086883829 5230459264
7878017889 9219902707 7690389532 1968198615 1437803149
9741106926 0886742962 2675756052 3172777520 3536139362
1076738937 6455606060 5922...
黄金分割对摄影画面构图可以说有着自然联系。例如照相机的片窗比例:135相机就是24X36即2:3的比例,这是很典型的。120相机4.5X6近似3:5,6X6虽然是方框,但在后期制作用,仍多数裁剪为长方形近似黄金分割的比例。只要我们翻开影集看一看,就会发现,大多数的画幅形式,都是近似这个比例。这可能是受传统的影响,也养成了人们的审美习惯。另外,也确实因为它具有悦目的性质,所以有时人们在时间中并非注意到这个比例,而特意去运用它,但往往就不自觉中,进入了这个法则之中。这也说明了,黄金分割的本身就存在有美的性质。在摄影实践中,运用黄金分割法则,主要表象在黄金分割点、线、面的运用中。黄金分割点,在全景构图中,多是主要表现对象,或是视觉中心所处的位置,在中、近景构图中,多是景物主要部位所处的位。在人像构图中常常是将人的眼睛处理在近于黄金分割点的位置。黄金分割线,多用作地平线、水平线、天际线所处的位置。

《梦幻曲》是一首带再现三段曲式,由A、B和A′三段构成。每段又由等长的两个4小节乐句构成。全曲共分6句,24小节。理论计算黄金分割点应在第14小节(240.618=14.83),与全曲高潮正好吻合。有些乐曲从整体至每一个局部都合乎黄金比例,本曲的六个乐句在各自的第2小节进行负相分割(前短后长);本曲的三个部分A、B、Aˊ在各自的第二乐句第2小节正相分割(前长后短),这样形成了乐曲从整体到每一个局部多层复合分割的生动局面,使乐曲的内容与形式更加完美。大、中型曲式中的奏鸣曲式、复三段曲式是一种三部性结构,其他如变奏曲、回旋曲及某些自由曲式都存在不同程度的三部性因素。黄金比例的原则在这些大、中型乐曲中也得到不同程度的体现。一般来说,曲式规模越大,黄金分割点的位置在中部或发展部越*后,甚至推迟到再现部的开端,这样可获得更强烈的艺术效果。莫扎特《D大调奏鸣曲》第一乐章全长160小节,再现部位于第99小节,不偏不依恰恰落在黄金分割点上(1600.618=98.88)。据美国数学家乔巴兹统计,莫扎特的所有钢琴奏鸣曲中有94%符合黄金分割比例,这个结果令人惊叹。我们未必就能弄清,莫扎特是有意识地使自己的乐曲符合黄金分割呢,抑或只是一种纯直觉的巧合现象。然而美国的另一位音乐家认为。"我们应当知道,创作这些不朽作品的莫扎特,也是一位喜欢数字游戏的天才。莫扎特是懂得黄金分割,并有意识地运用它的。"贝多芬《悲怆奏鸣曲》Op.13第二乐章是如歌的慢板,回旋曲式,全曲共73小节。理论计算黄金分割点应在45小节,在43小节处形成全曲激越的高潮,并伴随着调式、调性的转换,高潮与黄金分割区基本吻合。肖邦的《降D大调夜曲》是三部性曲式。全曲不计前奏共76小节,理论计算黄金分割点应在46小节,再现部恰恰位于46小节,是全曲力度最强的高潮所在,真是巧夺天工。我们再举一首大型交响音乐的范例,俄国伟大作曲家里姆斯-柯萨科夫在他的《天方夜谭》交响组曲的第四乐章中,写至辛巴达的航船在汹涌滔天的狂涛恶浪里,无可挽回地猛撞在有青铜骑士像的峭壁上的一刹那,在整个乐队震耳欲聋的音浪中,乐队敲出一记强有力的锣声,锣声延长了六小节,随着它的音响逐渐消失,整个乐队力度迅速下降,象征着那艘支离破碎的航船沉入到海底深渊。在全曲最高潮也就是"黄金点"上,大锣致命的一击所造成的悲剧性效果慑人心魂。

黄金律历来被染上瑰丽诡秘的色彩,被人们称为"天然合理"的最美妙的形式比例。世界上到处都存在数的美,对于我们的眼睛,尤其是对我们学习音乐的人的耳朵来说,"美是到处都有的,不是缺乏美,而是缺少发现"。

"0.618"还始终与军事发展有不解之缘,而且常常与战争不期而遇。无论是古希腊帕特农神庙的美轮,还是中国古代的兵马俑,它们的垂直线与水平线之间的关系竟然完全符合1∶0.618的比例。成吉思汗的蒙古骑兵横扫欧亚大陆令人惊叹。经过研究发现,蒙古骑兵的战 斗队形与西方传统的方阵大不相同,在他的五排制阵型中,重骑兵和轻骑兵为2∶3,人盔马甲的重骑兵为2,快捷灵活的轻骑兵为3,两者在编配上恰巧符合黄金分割律。欧洲人是最早有意识地把黄金分割律运用于宗教和艺术方面的,而在军事上的应用是从黑火药时期开始的。那时滑膛枪呈现出取代长矛之势,率先将滑膛枪 兵和长矛兵对半混编的荷兰将军摩利士未能突破传统阵型的羁绊,瑞典国王古斯 塔夫对这种正面强翼侧弱的阵型进行调整后,使瑞典军队变成了当时欧洲战斗力最强的军队。他的做法是,在摩利士将军原来的216名长矛兵与198名滑膛枪兵混 合编组的基础上,再增加96名滑膛枪兵,这一改变,顺应了科技发展和武器装备 进步对战术发展的影响规律,突出了火器在战斗中的作用,使之跨越了冷热兵器时代的分水岭。198+96名滑膛枪兵与216名长矛兵之比,让我们又一次看到了黄金 分割律的神奇作用。1812年6月,拿破仑进攻俄国;9月,他在博罗金诺战役后进入莫斯科,这时的拿破仑并未意识到天才和运气正从他身上一点一点地消失,他一生事业的顶峰 和转折点正同时到来。一个月后,法军便在大雪纷飞中撤离莫斯科,三个月的胜 利进军加上两个月的盛极而衰,从时间轴线上看,拿破仑脚下正好踩在了黄金分割线上。

130年后的另一个6月,纳粹德国启动了针对苏联的"巴巴罗萨"计划,在长 达两年多的时间里,德军一直保持进攻势头,直到1943年8月,"城堡"行动结束,德军从此转攻为守,再也没有能对苏军发起一次战役规模的进攻行动。被所有 战史学家公认为苏联卫国战争转折点的斯大林格勒战役,就发生在战争爆发后的 第17个月,正是德军由盛而衰的26个月时间轴线的黄金分割点.海湾战争中,美军一再延长空袭时间,持续38天,直到摧毁了伊拉克在战区内4280辆坦克中的38%、2280辆装甲车中的32%、3100门火炮中的47%,也就是将伊 拉克军事力量削弱到黄金分割点上后,才抽出"沙漠军刀"砍向萨达姆,地面作战只用100个小时就达成了战争目的。

透过战争中的一些零散战例,依稀可见"0.618"的影子在晃动、在徘徊。如 果孤立地看待它们,好似偶然巧合,但是如果太多的偶然遵循着同一个轨迹,那 就成为规律,就特别值得人们深入研究了。

一次无意中和同学在操场上打球,顺手测量了雕相牛顿的鼻子,其鼻孔间的距离和到鼻梁的比刚好接近于0.618。之后又测量了几个人的鼻子,结果符合黄金分割点。接下来的生活中对0.618变得很敏感,经过同学的推想与实践,我们发现了多弥乐古牌的长宽之比,蝴蝶的身体部位之比,漂亮花瓣的长宽之比也都符合这一规律。查询了很多的相关资料例如埃及金字塔便是这一规律的最好应用。

想象一下如何让一根很普通的细橡皮筋发出“哆来咪”的声音?把它拉紧,固定住,拨动一下,就是“1”,然后量出其长,作一道初三几何题——把这条“线段”进行黄金分割, 可以测出“分割”得到的两条线段中较长的一段,约是原线段长度的0.618倍。捏住这个点,拨动较长的那段“弦”,就发出“2”;再把这段较长线进行黄金分割,就找到了“3”, 以此类推“4、5、6、7”同样可以找到。

你从电视中见过碧水轻流的安大略湖畔的加拿大名城多伦多吗?这个高楼大厦鳞次栉比的现 代化城市中,最醒目的建筑就是高耸的多伦多电视塔,它器宇轩昂,直冲云霄。有趣的是嵌 在塔中上部的扁圆的空中楼阁,恰好位于塔身全长的0.618倍处,即在塔高的黄金分割点上。它使瘦削的电视塔显得和谐、典雅、别具一格。多伦多电视塔被称为“高塔之王”,这个 奇妙的“0.618”起了决定性作用。与此类似,举世闻名的法兰西国土上的“高塔之祖”——埃菲尔铁塔,它的第二层平台正好坐落在塔高的黄金分割点上,给铁塔增添了无穷的魅力。

气势雄伟的建筑物少不了“0.618”,艺术上更是如此。舞台上,演员既不是站在正中间, 也 不会站在台边上,而是站在舞台全长的0.618倍处,站在这一点上,观众看上去才惬意。我们所熟悉的米洛斯的“维纳斯”、“雅典娜”女神像及“海姑娘”阿曼达等一些名垂千古的 雕像中,都可以找到“黄金比值”——0.618,因而作品达到了美的奇境。

达·芬奇的《蒙娜丽莎》、拉斐尔笔下温和俊秀的圣母像,都有意无意地用上了这个比值。因为人体的很多部位,都遵循着黄金分割比例。人们公认的最完美的脸型——“鹅蛋”形,脸宽与脸长的比值约为0.618,如果计算一下翩翩欲仙的芭蕾演员的优美身段,可以得知,他们的腿长与身 长的比值也大约是0.618,组成了人体的美。

我国一位二胡演奏家在漫长的演奏生涯中发现 ,如果把二胡的“千斤”放在琴弦某处,音色会无与伦比的美妙。经过数学家验证,这一点恰恰是琴弦的黄金分割点0.618!黄金比值,在创造着奇迹!�

偶然吗?不,在人们身边,到处都有0.618的“杰作”:人们总是把桌面、门窗等做成长方形、宽与长比值为0.618。在数学上,0.618更是大显神通。0.618,美的比值、美的色彩、美的旋律,广泛地体现在人们的日常生活中,与人们关系甚密。0.618,奇妙的数字!它创造了无数的美,统一着人们的审美观。

爱开玩笑的0.618,又制造了大量的“巧合”。在整个世界中,无处不闪耀着0.618那黄金一样熠熠的光辉!人们时时刻刻在有意无意创造着一个个的黄金分割。只要稍微留心一下便可发现它离我们的生活有多近!数学离我们很近,无时不刻地在应用着它!

我们要首先感受并体会到数学学习中的美。数学美不同于其它的美,这种美是独特的、内在的。这种美,正如英国着名哲学家、数理逻辑学家罗素所说:“数学,如果正确地看它,不但拥有真理,而且也具有至高无上的美,正象雕刻的美,是一种冷而严肃的美。这种美不是投合我们天性的微弱的方面,这种美没有绘画或音乐那样华丽的服饰,它可以纯净到崇高的地步,能够达到严格的只有伟大的艺术能显示的那种完满的境界。”课堂上老师经常给我们讲数学美,通过高等数学的学习,我渐渐地领略到数学美的真正含义,这种感觉是奇异的、微妙的,是可以神会而难以言传的,数学,对我来说,是那样的富有魅力……在生活中只要我们善于观察,善于思考,将所学的知识与生活结合起来将会感到数学的乐趣。生活中处处都应用着数学的知识。

热点内容
一加保存的密码在哪里 发布:2025-03-12 01:13:06 浏览:88
微信第三方平台源码 发布:2025-03-12 01:12:21 浏览:780
服务器关闭怎么补偿 发布:2025-03-12 01:01:26 浏览:333
c语言复数的四则运算 发布:2025-03-12 01:01:22 浏览:802
我的世界电脑版新的服务器 发布:2025-03-12 01:00:27 浏览:378
网站数据库设置 发布:2025-03-12 00:52:13 浏览:310
安卓是哪个企业 发布:2025-03-12 00:41:23 浏览:91
javascript还是php 发布:2025-03-12 00:41:12 浏览:697
微博抽奖算法 发布:2025-03-12 00:41:10 浏览:112
抖音的麦克风在哪里打开安卓版 发布:2025-03-12 00:35:15 浏览:122