sift算法原理
1. OpenCV+Python特征提取算法与图像描述符之SIFT / SURF / ORB
算法效果比较博文
用于表示和量化图像的数字列表,简单理解成将图片转化为一个数字列表表示。特征向量中用来描述图片的各种属性的向量称为特征矢量。
参考
是一种算法和方法,输入1个图像,返回多个特征向量(主要用来处理图像的局部,往往会把多个特征向量组成一个一维的向量)。主要用于图像匹配(视觉检测),匹配图像中的物品。
SIFT论文
原理
opencv官网解释
实质是在不同的尺度空间上查找关键点(特征点),并计算出关键点的方向。SIFT所查找到的关键点是一些十分突出,不会因光照,仿射变换和噪音等因素而变化的点,如角点、边缘点、暗区的亮点及亮区的暗点等。
尺度不变特征转换(Scale-invariant feature transform或SIFT)是一种电脑视觉的算法用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置、尺度、旋转不变量。
其应用范围包含物体辨识、机器人地图感知与导航、影像缝合、3D模型建立、手势辨识、影像追踪和动作比对。
对现实中物体的描述一定要在一个十分重要的前提下进行,这个前提就是对自然界建模时的尺度。当用一个机器视觉系统分析未知场景时,计算机没有办法预先知道图像中物体的尺度,因此我们需要同时考虑图像在多尺度下的描述,获知感兴趣物体的最佳尺度。图像的尺度空间表达指的是图像的所有尺度下的描述。
KeyPoint数据结构解析
SURF论文
原理
opencv官网解释
SURF是SIFT的加速版,它善于处理具有模糊和旋转的图像,但是不善于处理视角变化和光照变化。在SIFT中使用DoG对LoG进行近似,而在SURF中使用盒子滤波器对LoG进行近似,这样就可以使用积分图像了(计算图像中某个窗口内所有像素和时,计算量的大小与窗口大小无关)。总之,SURF最大的特点在于采用了Haar特征以及积分图像的概念,大大加快了程序的运行效率。
因为专利原因,OpenCV3.3开始不再免费开放SIFT\SURF,需要免费的请使用ORB算法
ORB算法综合了FAST角点检测算法和BRIEFF描述符。
算法原理
opencv官方文档
FAST只是一种特征点检测算法,并不涉及特征点的特征描述。
论文
opencv官方文档
中文版
Brief是Binary Robust Independent Elementary Features的缩写。这个特征描述子是由EPFL的Calonder在ECCV2010上提出的。主要思路就是在特征点附近随机选取若干点对,将这些点对的灰度值的大小,组合成一个二进制串,并将这个二进制串作为该特征点的特征描述子。文章同样提到,在此之前,需要选取合适的gaussian kernel对图像做平滑处理。
1:不具备旋转不变性。
2:对噪声敏感
3:不具备尺度不变性。
ORB论文
OpenCV官方文档
ORB采用了FAST作为特征点检测算子,特征点的主方向是通过矩(moment)计算而来解决了BRIEF不具备旋转不变性的问题。
ORB还做了这样的改进,不再使用pixel-pair,而是使用9×9的patch-pair,也就是说,对比patch的像素值之和,解决了BRIEF对噪声敏感的问题。
关于计算速度:
ORB是sift的100倍,是surf的10倍。
对图片数据、特征分布的一种统计
对数据空间(bin)进行量化
Kmeans
边缘:尺度问题->不同的标准差 捕捉到不同尺度的边缘
斑点 Blob:二阶高斯导数滤波LoG
关键点(keypoint):不同视角图片之间的映射,图片配准、拼接、运动跟踪、物体识别、机器人导航、3D重建
SIFT\SURF
2. sift算法是什么
Sift算法是David Lowe于1999年提出的局部特征描述子,并于2004年进行了更深入的发展和完善。Sift特征匹配算法可以处理两幅图像之间发生平移、旋转、仿射变换情况下的匹配问题,具有很强的匹配能力。
这一算法的灵感也十分的直观,人眼观测两张图片是否匹配时会注意到其中的典型区域(特征点部分),如果我们能够实现这一特征点区域提取过程,再对所提取到的区域进行描述就可以实现特征匹配了。
sift算法的应用
SIFT算法目前在军事、工业和民用方面都得到了不同程度的应用,其应用已经渗透了很多领域,典型的应用如下:物体识别;机器人定位与导航;图像拼接;三维建模;手势识别;视频跟踪;笔记鉴定;指纹与人脸识别;犯罪现场特征提取。
3. sift特征向量的维数
基于不变量技术的特征检测方法的基础上,提出的一种基于尺度空间的、对图像缩放、旋转、仿射变换、光照变化保持稳定性的图像局部特征描述算法-SIFT算子。SIFT特征点向量的生成由以下四步骤组成:1、在尺度空间中检测极值点;2、去除低对比度的极值点和不稳定的边缘极值点,得到特征点;3、计算特征点的方向参数;4、生成SIFT特征点向量,向量维数一般为128维。运用SIFT算法提取的SIFT特征点向量具有如下优点:1、SIFT特征是图像的局部特征,对旋转、尺度缩放、亮度变化保持不变化性,对视角变化、仿射变换、噪音也保持一定程度的稳定性;2、独特性好,信息量丰富,适用于在海量特征数据库中进行快速、准确的匹配;3、多量性,即使少数的几个物体也可以产生大量SIFT特征向量。现有的SIFT算法具有一定的缺陷,对于图像的检测效率和检测精度较差。
技术实现思路
有鉴于此,本专利技术实施例的目的在于提供一种基于改进SIFT的图像特征检测方法及装置,以解决上述技术问题。第一方面,本专利技术实施例提供了一种基于改进S...
【技术保护点】
1.一种基于改进SIFT的图像特征检测方法,其特征在于,包括:获取待检测图像和对应的标准图像;利用尺度不变特征变换SIFT算法对所述待检测图像和所述标准图像进行图像匹配,获得多对匹配点;计算所述匹配点之间的邻域直径比和方向角度差;根据所述邻域直径比和所述方向角度差对所述匹配点进行剔除,获得正确匹配点,以获得所述待检测图像中的特征。
4. 怎么验证sift算法对亮度的不变性
2、高斯模糊
SIFT算法是在不同的尺度空间上查找关键点,而尺度空间的获取需要使用高斯模糊来实现,Lindeberg等人已证明高斯卷积核是实现尺度变换的唯一变换核,并且是唯一的线性核。本节先介绍高斯模糊算法。
2.1二维高斯函数
高斯模糊是一种图像滤波器,它使用正态分布(高斯函数)计算模糊模板,并使用该模板与原图像做卷积运算,达到模糊图像的目的。
N维空间正态分布方程为:
(1-1)
其中,是正态分布的标准差,值越大,图像越模糊(平滑)。r为模糊半径,模糊半径是指模板元素到模板中心的距离。如二维模板大小为m*n,则模板上的元素(x,y)对应的高斯计算公式为:
(1-2)
在二维空间中,这个公式生成的曲面的等高线是从中心开始呈正态分布的同心圆,如图2.1所示。分布不为零的像素组成的卷积矩阵与原始图像做变换。每个像素的值都是周围相邻像素值的加权平均。原始像素的值有最大的高斯分布值,所以有最大的权重,相邻像素随着距离原始像素越来越远,其权重也越来越小。这样进行模糊处理比其它的均衡模糊滤波器更高地保留了边缘效果。
5. sift特征点正确匹配率是怎么计算出来的
一、特征点(角点)匹配
图像匹配能够应用的场合非常多,如目标跟踪,检测,识别,图像拼接等,而角点匹配最核心的技术就要属角点匹配了,所谓角点匹配是指寻找两幅图像之间的特征像素点的对应关系,从而确定两幅图像的位置关系。
角点匹配可以分为以下四个步骤:
1、提取检测子:在两张待匹配的图像中寻找那些最容易识别的像素点(角点),比如纹理丰富的物体边缘点等。
2、提取描述子:对于检测出的角点,用一些数学上的特征对其进行描述,如梯度直方图,局部随机二值特征等。检测子和描述子的常用提取方法有:sift,harris,surf,fast,agast,brisk,freak,brisk,brief/orb等。
3、匹配:通过各个角点的描述子来判断它们在两张图像中的对应关系,常用方法如 flann等。
4、消噪:去除错误匹配的外点,保留正确的匹配点。常用方法有KDTREE,BBF,Ransac,GTM等。
二、SIFT匹配方法的提出
为了排除因为图像遮挡和背景混乱而产生的无匹配关系的关键点,SIFT的作者Lowe提出了比较最近邻距离与次近邻距离的SIFT匹配方式:取一幅图像中的一个SIFT关键点,并找出其与另一幅图像中欧式距离最近的前两个关键点,在这两个关键点中,如果最近的距离除以次近的距离得到的比率ratio少于某个阈值T,则接受这一对匹配点。因为对于错误匹配,由于特征空间的高维性,相似的距离可能有大量其他的错误匹配,从而它的ratio值比较高。显然降低这个比例阈值T,SIFT匹配点数目会减少,但更加稳定,反之亦然。
Lowe推荐ratio的阈值为0.8,但作者对大量任意存在尺度、旋转和亮度变化的两幅图片进行匹配,结果表明ratio取值在0. 4~0. 6 之间最佳,小于0. 4的很少有匹配点,大于0. 6的则存在大量错误匹配点,所以建议ratio的取值原则如下:
ratio=0. 4:对于准确度要求高的匹配;
ratio=0. 6:对于匹配点数目要求比较多的匹配;
ratio=0. 5:一般情况下。
三、常见的SIFT匹配代码
1、vlfeat中sift toolbox中的vl_ubcmatch.c使用的是普通的欧氏距离进行匹配(该SIFT代码贡献自Andrea
Vedaldi)。
2、Lowe的C++代码中使用的是欧氏距离,但是在matlab代码中为了加速计算,使用的是向量夹角来近似欧氏距离:先将128维SIFT特征向量归一化为单位向量(每个数除以平方和的平方根),然后点乘来得到向量夹角的余弦值,最后利用反余弦(acos函数)求取向量夹角。实验证明Lowe的办法正确率和耗时都很不错。
同样,也可以采用knnsearch函数求最近点和次近点:knnsearch采用euclidean距离时得到的结果与lowe采用的近似方法结果几乎一致,正好印证了模拟欧氏距离的效果。
3、Rob Hess的OpenSIFT采用了KDTREE来对匹配进行优化。
4、CSDN大神v_JULY_v实现了KDTREE+BBF对SIFT匹配的优化和消除错误匹配:从K近邻算法、距离度量谈到KD树、SIFT+BBF算法
- 结构之法 算法之道 - 博客频道 - CSDN.NET。
5、OpenCV中features2d实现的SIFT匹配有多种matcher:VectorDescriptorMatcher,BFMatcher(Brute-force descriptor matcher),FernDescriptorMatcher,OneWayDescriptorMatcher,FlannBasedMatcher 等等。目前只知道采用knnsearch,提供了多种距离度量方式,具体区别不懂。
6. sift的特征描述子是一副图像的还是每一层都有
SIFT是我接触最早的图像局部特征描述子之一,其实最初,始终觉得局部特征描述子是些非常玄虚的东西。对于SIFT,这种感觉更是尤为强烈,“尺度空间”“拉普拉斯高斯算子(LoG)”“高斯差分金字塔”,一系列让人头痛的概念。不过,反反复复看了几次,渐渐也就有了感觉,在此总结一下。
物体识别的核心问题是将同一目标在不同时间、不同分辨率、不同光照、不同位姿情况下所成的像相相匹配。而为了进行匹配,我们首先要合理的表示图像。由于目标的自身状态、场景所处的环境的影响,同一类物体在不同的图像中所成的像往往会差别很大,但即使这样,人们所能通过同一物体的一些局部共性来识别出物体(正如我们能将不同国家民族的人区分出来)。所谓局部特征描述子就是用来刻画图像中的这些局部共性的,而我们也可以将一幅图像映射(变换)为一个局部特征的集合。理想的局部特征应具有平移、缩放、旋转不变性,同时对光照变化、仿射及投影影响也应有很好的鲁棒性。传统的局部特征往往是直接提取角点或边缘,对环境的适应能力较差。1999年British Columbia大学 David G.Lowe 教授总结了现有的基于不变量技术的特征检测方法,并正式提出了一种基于尺度空间的、对图像缩放、旋转甚至仿射变换保持不变性的图像局部特征描述算子-SIFT(尺度不变特征变换),这种算法在2004年被加以完善。
SIFT算法的实质可以归为在不同尺度空间上查找关键点(特征点)的问题。所谓关键点,就是一些十分突出的点,这些点不会因光照条件的改变而消失,比如角点、边缘点、暗区域的亮点以及亮区域的暗点,既然两幅图像中有相同的景物, 那么使用某种方法分别提取各自的稳定点,这些点之间就会有相互对应的匹配点。而在SIFT中,关键点是在不同尺度空间的图像下检测出的具有方向信息的局部极值点。涉及到的最重要的两步是:1.构建尺度空间 2.关键点检测
构建尺度空间
先来谈谈尺度的问题。我们要精确表示的物体都是通过一定的尺度来反映的。现实世界的物体也总是通过不同尺度的观察而得到不同的变化。比如说,对同一物体拍照,我们拍摄了一副近景,一副远景,虽然两幅图片中都有这个物体,但这个物体确是处于两个不同的尺度。SIFT特征具有尺度不变性,就是说即使同一物体处于两个不同的尺度的图像中,我们仍可以通过提取图像的SIFT特征匹配成功。
图像的尺度有多种表示方法(金字塔、八叉树等等),在SIFT中Lowe教授采用了尺度空间理论。其主要思想是通过对原始图像进行尺度变换,获得图像多尺度下的尺度空间表示序列,并检测这个序列中的关键点。这样图片就被映射为多个尺度上的关键点信息,尽管两幅图片是处于不同的尺度,但却可以提取出在尺度变换中没有改变的关键点,从而进行关键点匹配,进而识别出物体。
实际上,在尺度空间理论中,是通过对图像进行模糊来模拟多尺度下的图像。直观上,图像的模糊程度逐渐变大,模拟了人在距离目标由近到远时目标在视网膜上的形成过程。文献《Scale-space theory: A basic tool for analysing structures at different scales》证明,高斯核是唯一可以产生多尺度空间的核(其它核会对图像造成模糊之外的其它影响)。一个图像的尺度空间, L(x,y,σ) (σ 可以代表尺度的大小) ,定义为原始图像 I(x,y)与一个可变尺度的2维高斯函数 G(x,y,σ) 卷积运算。高斯函数:
G(x,y,σ)=12πσ2e−(x2+y2)/(2σ2)
L(x,y,σ)=G(x,y,σ)∗I(x,y)
需要的注意的是,图像的尺度是自然存在的,不是人为创造的!高斯卷积只是表现尺度空间的一种形式。(在SIFT的代码中,进行高斯模糊时,用到了高斯模糊的“勾股定理”:例如,使用半径分别为 6 和 8 的两次高斯模糊变换得到的效果等同于一次半径为 10 的高斯模糊效果)。
图1:高斯金字塔
在SIFT中,构建了高斯金字塔(如图1所示),即分为两步:1)对图像做高斯平滑 2)对图像做降采样(减小计算量)。一幅图像可以产生几组(octave)图像,一组图像包括几层(interval)图像。为了让尺度体现出连续性,相邻两层图像间的尺度为k倍的关系,同时相邻两组的同一层尺度为2倍的关系(在SIFT算法中,Lowe教授假设初始图片已经是以一定 σ 模糊过得了)。
关键点检测
文献《Scale-space theory: A basic tool for analysing structures at different scales》指出尺度规范化的LoG算子具有真正的尺度不变性。即我们可以在不同尺度的图像(已经经过高斯卷积)上进行拉普拉斯运算(二阶导数),并求极值点,从而求出关键点。