当前位置:首页 » 操作系统 » 数据结构与算法分析视频

数据结构与算法分析视频

发布时间: 2023-07-31 01:38:04

㈠ 数据结构与算法分析 C++

你说的是中序线索二叉树的插入和删除

#include<stdio.h>
#include"malloc.h"
#include"windows.h"
#definemaxsize20//规定树中结点的最大数目
typedefstructnode{//定义数据结构
intltag,rtag;//表示child域指示该结点是否孩子
chardata;//记录结点的数据
structnode*lchild,*rchild;//记录左右孩子的指针
}Bithptr;

Bithptr*Q[maxsize];//建队,保存已输入的结点的地址
Bithptr*CreatTree(){//建树函数,返回根指针
charch;
intfront,rear;
Bithptr*T,*s;
T=NULL;
front=1;rear=0;//置空二叉树
printf("建立一棵二叉树,请输入结点信息: ");
printf("请输入新的结点信息,@为空结点,#为结束标志:");
ch=getchar()();//输入第一个字符
while(ch!='#')//判断是否为结束字符
{
s=NULL;
if(ch!='@')//判断是否为虚结点
{
s=(Bithptr*)malloc(sizeof(Bithptr));
s->data=ch;
s->lchild=NULL;
s->rchild=NULL;
s->rtag=0;
s->ltag=0;
}
rear++;
Q[rear]=s;//将结点地址加入队列中
if(rear==1)T=s;//输入为第一个结点为根结点
else
{
if(s!=NULL&&Q[front]!=NULL)//孩子和双亲结点均不是虚结点
if(rear%2==0)
Q[front]->lchild=s;
elseQ[front]->rchild=s;
if(rear%2==1)front++;
}getchar()();
printf("请输入新的结点信息,@为空结点,#为结束标志:");
ch=getchar()();
}
returnT;
}
voidInorder(Bithptr*T)//中序遍历
{
if(T)
{
if(T->ltag!=1)Inorder(T->lchild);
printf("→%c",T->data);
if(T->rtag!=1)Inorder(T->rchild);
}
}

Bithptr*pre=NULL;
voidPreThread(Bithptr*root)//中序线索化算法,函数实现
{
Bithptr*p;
p=root;
if(p){
PreThread(p->lchild);//线索化左子树
if(pre&&pre->rtag==1)pre->rchild=p;//前驱结点后继线索化
if(p->lchild==NULL)
{
p->ltag=1;
p->lchild=pre;
}
if(p->rchild==NULL)//后继结点前驱线索化
p->rtag=1;
pre=p;
PreThread(p->rchild);
}
}
voidPrintIndex(Bithptr*t)//输出线索
{
Bithptr*f;
f=t;
if(f)
{
if(f->ltag==1&&f->lchild==NULL&&f->rtag==1)printf("【%c】",f->data);//如果是第一个结点
if(f->ltag==1&&f->lchild!=NULL)printf("%c→【%c】",f->lchild->data,f->data);//如果此结点有前驱就输出前驱和此结点
if(f->ltag==1&&f->rtag==1&&f->rchild!=NULL)printf("→%c",f->rchild->data);//如果此结点有前驱也有后继,就输出后继
elseif(f->rtag==1&&f->rchild!=NULL)printf("【%c】→%c",f->data,f->rchild->data);//如果没有前驱,就输出此结点和后继
printf(" ");
if(f->ltag!=1)PrintIndex(f->lchild);
if(f->rtag!=1)PrintIndex(f->rchild);
}
}
Bithptr*SearchChild(Bithptr*point,charfindnode)//查找孩子结点函数
{
Bithptr*point1,*point2;
if(point!=NULL)
{
if(point->data==findnode)returnpoint;
else
if(point->ltag!=1){point1=SearchChild(point->lchild,findnode);if(point1!=NULL)returnpoint1;}
if(point->rtag!=1){point2=SearchChild(point->rchild,findnode);if(point2!=NULL)returnpoint2;}
returnNULL;
}
else
returnNULL;
}
Bithptr*SearchPre(Bithptr*point,Bithptr*child)//查找父亲结点函数
{
Bithptr*point1,*point2;
if(point!=NULL)
{
if((point->ltag!=1&&point->lchild==child)||(point->rtag!=1&&point->rchild==child))returnpoint;//找到则返回
else
if(point->ltag!=1)
{
point1=SearchPre(point->lchild,child);
if(point1!=NULL)
returnpoint1;
}
if(point->rtag!=1)
{
point2=SearchPre(point->rchild,child);
if(point2!=NULL)
returnpoint2;
}
returnNULL;
}
else
returnNULL;
}
voidInsert(Bithptr*root)
{
charch;
charc;
Bithptr*p1,*child,*p2;
printf("请输入要插入的结点的信息:");
scanf("%c",&c);
scanf("%c",&c);
p1=(Bithptr*)malloc(sizeof(Bithptr));//插入的结点信息
p1->data=c;
p1->lchild=NULL;
p1->rchild=NULL;
p1->rtag=0;
p1->ltag=0;
printf("输入查找的结点信息:");
scanf("%c",&ch);
scanf("%c",&ch);
child=SearchChild(root,ch);//查孩子结点的地址
if(child==NULL){
printf("没有找到结点 ");
system("pause");
return;
}
elseprintf("发现结点%c ",child->data);
if(child->ltag==0)//当孩子结点有左孩子的时候
{
p2=child;
child=child->lchild;
while(child->rchild&&child->rtag==0)//找到左子树下,最右结点
child=child->rchild;
printf("发现结点%c ",child->data);
p1->rchild=child->rchild;//后继化
p1->rtag=1;
child->rtag=0;
child->rchild=p1;//连接
p1->lchild=child;//前驱化
p1->ltag=1;
}
else//当孩子结点没有左孩子的时候
{
p1->lchild=child->lchild;//前驱化
child->ltag=0;
p1->ltag=1;
child->lchild=p1;
p1->rchild=child;
p1->rtag=1;
}
printf(" 插入结点操作已经完成,并同时完成了线索化的恢复 ");
}

㈡ 数据结构与算法分析 —— C 语言描述:开放寻址法

分离链接散列算法的缺点是需要指针,由于给新单元分配地址需要时间,因此这就导致算法的速度多少有些缓慢,同时算法实际上还要求实现另一种数据结构。除使用链表解决冲突外,开放寻址散列法(open addressing hashing)是另外一种用链表解决冲突的方法。在开放寻址散列算法系统中,如果有冲突发生,那么就要尝试选择另外的单元,直到找出空的单元为止。更一般地,单元 相继试选,其中 ,且 。函数 F 是冲突解决方法,因为所有的数据都要置入表内,所以开放寻址散列法所需要的表要比分离链接散列用的表大。一般说来,对开放寻址散列算法来说,装填因子应该低于 。开放寻址散列法有三种常用的冲突解决办法:

在线性探测法中,函数 F 是 的线性函数,典型的情形是 。这相当于逐个探测每个单元(必要时可以绕回)以查找出一个空空单元。即插入一个第一个冲突关键字,它将被放入下一个空闲地址,即地址 0,该地址是开放的。之后插入的冲突关键字,会对表进行试选,只要表足够大,总能够找到一个自由单元,但是如此花费的时间是相当多的。更糟的是,即使表相对较空,这样占据的单元也会开始形成一些区块,其结果称为一次聚集(primary clustering),于是,散列到区块中的任何关键字都需要多次试选单元才能解决冲突,然后该关键字被添加到相应的区块中。

可以证明,使用线性探测的预期探测次数对于插入和不成功的查找来说大约为 ,而对于成功的查找来说则是 。略加思考不难得出,成功查找应该比不成功查找平均花费较少的时间。

如果聚算不算是问题,那么对应的公式就不难得到。我们假设有一个很大的表,并设每次探测都与前面的探测无关。对于随机冲突解决办法而言,这些假设是成立的,并且当 不是非常接近 1 时也是合理的。首先,我们导出在一次不成功查找中探测的期望次数,而这正是直到我们找到一个空单元的探测次数。由于空单元所占的份额为 ,因此我们预计要探测的单元数是 。一次成功查找的探测次数等于该特定元素插入时所需要的探测次数。当一个元素被插入时,可以看成是一次不成功查找的结果。因此,我们可以使用一次不成功查找的开销来计算一次成功查找的平均开销。

需要指出, 在 0 到当前值之间的变化,因此早期的插入操作开销较少,从而降低平均开销。我可以通过使用积分计算插入时间平均值的方法来估计平均值,如此得到

这些公式显然优于线性探测相应的公式,聚集不仅是理论上的问题,而且实际上也发生在具体的实现中。线性探测的预计探测次数与 呈正比,即 越小,插入操作平均次数越少。

平方探测是消除线性探测中一次聚集问题的冲突解决办法。平方探测就是冲突函数为二次函数的探测方法。流行的选择是 。

对于线性探测,让元素几乎填满散列表并不是个好主意,因为此时表的性能会降低。对于平方探测情况甚至更糟:一旦表被填满超过一半,当表的大小不是素数时甚至在表被填满超过一半之前,就不能保证一次找到一个空单元了。这是因为最多有一半的表可以用作解决冲突的备选位置。

定理:如果使用平方探测,且表的大小是素数,那么当表至少有一半是空的时候,总能够插入一个新的元素。

哪怕表有比一半多一个的位置被填满,那么插入都有可能失败(虽然这是非常难以见到的,但是把它记住很重要。)。另外,表的大小是素数也非常重要,如果表的大小不是素数,则备选单元的个数可能会锐减。

在开放寻址散列表中,标准的删除操作不能施行,因为相应的单元可能已经引起过冲突,元素绕过它存在了别处。例如,如果我们删除一个冲突的中间元素,那么实际上所有其他的 Find 例程都将不能正确运行。因此,开放寻址散列表需要懒惰删除,虽然在这种情况下并不存在真正意义上的懒惰。

开放寻址散列表的类型声明如下,这里,我们不用链表数组,而是使用散列表项单元的数组,与在分离链接散列中一样,这些单元也是动态分配地址的。

初始化开放寻址散列表的例程如下,由分配空间(第1~10行)及其后将每个单元的 Info 域设置为 Empty 组成。

使用平方探测散列法的 Find 例程如下。如果分裂链接散列法一样, 将返回 Key 在散列表中的位置。如果 Key 不出现,那么 Find 将返回最后的单元。该单元就是当需要时,Key 将被插入的地方。此外,因为被标记了 Empty,所以表达 Find 失败很容易。为了方便起见,我们假设散列表的大小至少为表中元素个数的两倍,因此平方探测方法总能够实现。否则,我们就要在第 4 行前测试 。在下面的例程中,标记为删除的那些元素被认为还在表内,这可能引起一些问题,因为该表可能提前过满。

第 4~6 行为进行平方探测的快速方法。由平方解决函数的定义可知, ,因此,下一个要探测的单元可以用乘以 2(实际上就是进行一位二进制移位)并减 1 来确定。如果新的定位越过数组,那么可以通过减去 TableSize 把它拉回到数组范围内。这比通常的方法要快,因为它避免了看似需要的乘法和除法。注意一条重要的警告:第 3 行的测试顺序很重要,切勿改变它。

下面的例程是插入。正如分离链接散列方法那样,若 Key 已经存在,则我们就什么也不做。其他工作只是简单的修改。否则,我们就把要插入的元素放在 Find 例程指出的地方。

虽然平方探测排除了一次聚集,但是散列到同一位置上的那些元素将探测相同的备选单元。这叫做二次聚集(secondary clustering)。二次聚集是理论上的一个小缺憾,模拟结果指出,对每次查找,它一般要引起另外的少于一半的探测。

双散列(double hashing)能够解决平方探测中的二次聚集问题,不过也需要花费另外的一些乘法和除法形销。对于双散列,一种流行的选择是 。这个公式是说,我们将第二个散列函数应用到 X 并在距离 , 等处探测。 选择的不好将会是灾难性的。

在双散列时,保证表的带下为素数是非常重要的。假设我们在插入一个关键字的时候,发现它已经引发冲突,就会选择备选位置,如果表的大小不是素数,那么备选单元就很有可能提前用完。然后,如果双散列正确实现,则模拟表明,预期的探测次数几乎和随机冲突解决方法的情形相同。这使得双散列理论上很有吸引力,不过,平方探测不需要使用第二个散列函数,从而在实践中可能更简单并且更快。

㈢ 数据结构与算法分析

本文出自:

www点54manong点com

请尊重原创,转载请注明出处,谢谢!

什么是数据结构,为什么要学习数据结构?数据结构是否是一门纯数学课程?它在专业课程体系中起什么样的作用?我们要怎么才能学好数据结构?… 相信同学们在刚开始《数据结构》这门课的学习时,心里有着类似前面几个问题的这样那样的疑问。希望下面的内容能帮助大家消除疑惑,下定决心坚持学好这门课:

1 学习数据数据结构的意义

数据结构是计算机科学与技术专业、计算机信息管理与应用专业,电子商务等专业的基础课,是十分重要的核心课程。所有的计算机系统软件和应用软件都要用到各种类型的数据结构。因此,要想更好地运用计算机来解决实际问题,仅掌握几种计算机程序设计语言是难以应付当前众多复杂的课题。要想有效地使用计算机、充分发挥计算机的性能,还必须学习和掌握好数据结构的有关知识。打好“数据结构”这门课程的扎实基础,对于学习计算机专业的其他课程,如操作系统、数据库管理系统、软件工程、编译原理、人工智能、图视学等都是十分有益的。

2 为什么要学习数据结构

在计算机发展的初期,人们使用计算机的目的主要是处理数值计算问题。当我们使用计算机来解决一个具体问题时,一般需要经过下列几个步骤:首先要从该具体问题抽象出一个适当的数学模型,然后设计或选择一个解此数学模型的算法,最后编出程序进行调试、测试,直至得到最终的解答。例如,求解梁架结构中应力的数学模型的线性方程组,可以使用迭代算法来求解。

由于当时所涉及的运算对象是简单的整型、实型或布尔类型数据,所以程序设计者的主要精力是集中于程序设计的技巧上,而无须重视数据结构。随着计算机应用领域的扩大和软、硬件的发展,非数值计算问题越来越显得重要。据统计,当今处理非数值计算性问题占用了85%以上的机器时间。这类问题涉及到的数据结构更为复杂,数据元素之间的相互关系一般无法用数学方程式加以描述。因此,解决这类问题的关键不再是数学分析和计算方法,而是要设计出合适的数据结构,才能有效地解决问题。下面所列举的就是属于这一类的具体问题。

例1:图书馆信息检索系统。当我们根据书名查找某本书有关情况的时候;或者根据作者或某个出版社查找有关书籍的时候,或根据书刊号查找作者和出版社等有关情况的时候,只要我们建立了相关的数据结构,按照某种算法编写了相关程序,就可以实现计算机自动检索。由此,可以在图书馆信息检索系统中建立一张按书刊号顺序排列的图书信息表和分别按作者、书名、出版社顺序排列的索引表,如图1.1所示。由这四张表构成的文件便是图书信息检索的数学模型,计算机的主要操作便是按照某个特定要求(如给定书名)对图书馆藏书信息文件进行查询。

诸如此类的还有学生信息查询系统、商场商品管理系统、仓库物资管理系统等。在这类文档管理的数学模型中,计算机处理的对象之间通常存在着的是一种简单的线性关系,这类数学模型可称为线性的数据结构。

例2:八皇后问题。在八皇后问题中,处理过程不是根据某种确定的计算法则,而是利用试探和回溯的探索技术求解。为了求得合理布局,在计算机中要存储布局的当前状态。从最初的布局状态开始,一步步地进行试探,每试探一步形成一个新的状态,整个试探过程形成了一棵隐含的状态树。如图1.2所示(为了描述方便,将八皇后问题简化为四皇后问题)。回溯法求解过程实质上就是一个遍历状态树的过程。在这个问题中所出现的树也是一种数据结构,它可以应用在许多非数值计算的问题中。

例3:教学计划编排问题。一个教学计划包含许多课程,在教学计划包含的许多课程之间,有些必须按规定的先后次序进行,有些则没有次序要求。即有些课程之间有先修和后续的关系,有些课程可以任意安排次序。这种各个课程之间的次序关系可用一个称作图的数据结构来表示,如图1.3所示。有向图中的每个顶点表示一门课程,如果从顶点vi到vj之间存在有向边<vi,vj>,则表示课程i必须先于课程j进行。由以上三个例子可见,描述这类非数值计算问题的数学模型不再是数学方程,而是诸如线性表、树、图之类的数据结构。因此,可以说数据结构课程主要是研究非数值计算的程序设计问题中所出现的计算机操作对象以及它们之间的关系和操作的学科。

学习数据结构的目的是为了了解计算机处理对象的特性,将实际问题中所涉及的处理对象在计算机中表示出来并对它们进行处理。与此同时,通过算法训练来提高学生的思维能力,通过程序设计的技能训练来促进学生的综合应用能力和专业素质的提高。

3数据结构课程的内容

数据结构与数学、计算机硬件和软件有十分密切的关系,它是介于数学、计算机硬件和计算机软件之间的一门计算机专业的核心课程,是高级程序设计语言、操作系统、编译原理、数据库、人工智能、图视学等课程的基础。同时,数据结构技术也广泛应用于信息科学、系统工程、应用数学以及各种工程技术领域。

数据结构课程重在讨论软件开发过程中的方案设计阶段、同时设计编码和分析阶段的若干基本问题。此外,为了构造出好的数据结构及其实现,还需考虑数据结构及其实现的评价与选择。因此,数据结构的内容包括三个层次的五个“要素”,如图1.3所示。

数据结构的核心技术是分解与抽象。通过分解可以划分出数据的三个层次;再通过抽象,舍弃数据元素的具体内容,就得到逻辑结构。类似地,通过分解将处理要求划分成各种功能,再通过抽象舍弃实现细节,就得到运算的定义。上述两个方面的结合使我们将问题变换为数据结构。这是一个从具体(即具体问题)到抽象(即数据结构)的过程。然后,通过增加对实现细节的考虑进一步得到存储结构和实现运算,从而完成设计任务。这是一个从抽象(即数据结构)到具体(即具体实现)的过程。熟练地掌握这两个过程是数据结构课程在专业技能培养方面的基本目标。

结束语:数据结构作为一门独立的课程在国外是从1968年才开始的,但在此之前其有关内容已散见于编译原理及操作系统之中。20世纪60年代中期,美国的一些大学开始设立有关课程,但当时的课程名称并不叫数据结构。1968年美国唐.欧.克努特教授开创了数据结构的最初体系,他所着的《计算机程序设计技巧》第一卷《基本算法》是第一本较系统地阐述数据的逻辑结构和存储结构及其操作的着作。从20世纪60年代末到70年代初,出现了大型程序,软件也相对独立,结构程序设计成为程序设计方法学的主要内容,人们越来越重视数据结构。从70年代中期到80年代,各种版本的数据结构着作相继出现。目前,数据结构的发展并未终结,一方面,面向各专门领域中特殊问题的数据结构得到研究和发展,如多维图形数据结构等;另一方面,从抽象数据类型和面向对象的观点来讨论数据结构已成为一种新的趋势,越来越被人们所重视。

㈣ 那位大佬有数据结构和算法java版的视频如果好的话可以购买,

我有马士兵视频的网络云版,里面包含前期的基础算法和数据结构,但是没有面面俱到的那种专业数据结构和算法

当然还包括许多其他老师的数据结构和算法的视频,不知道你要的是什么样的

㈤ 大家有没有数据结构与算法的视频或好书呀

个人感觉比较好的 清华严尉敏的《数据结构》 中国铁道出版社的 《数据结构C语言版》 weiss的《数据结构与算法分析》 《算法导论》 《算法概论》 Sedgewick《算法I-V》 Knuth《计算机程序设计艺术》 《编程珠玑》 好书很多,pdf和视频之类的可以去 www.verycd.com 下,有很多好资源 :)

热点内容
低温存储测试 发布:2025-03-14 12:10:22 浏览:244
c语言二维数组的输出 发布:2025-03-14 11:58:10 浏览:25
安卓脚本自动运行 发布:2025-03-14 11:49:35 浏览:354
yii页面缓存 发布:2025-03-14 11:45:51 浏览:798
c语言算法书 发布:2025-03-14 11:45:26 浏览:264
安卓动漫插件在哪里 发布:2025-03-14 11:41:11 浏览:660
linux复制系统文件到 发布:2025-03-14 11:29:45 浏览:40
腰2椎体压缩性骨折多久能干活 发布:2025-03-14 11:29:34 浏览:168
脚本挖图全自动 发布:2025-03-14 11:28:51 浏览:77
redis缓存有效期 发布:2025-03-14 11:28:45 浏览:739