例是算法
Ⅰ 分治算法几个经典例子
分治法,字面意思是“分而治之”,就是把一个复杂的1问题分成两个或多个相同或相似的子问题,再把子问题分成更小的子问题直到最后子问题可以简单地直接求解,原问题的解即子问题的解的合并,这个思想是很多高效算法的基础。
图二
大整数乘法
Strassen矩阵乘法
棋盘覆盖
合并排序
快速排序
线性时间选择
最接近点对问题
循环赛日程表
汉诺塔
Ⅱ c语言问题: 什么是算法试从日常生活中找3个例子,描述它们的算法。 详细点,谢谢!
c语言中的算法是指:一系列解决问题的清晰指令,用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。通俗说就是解决问题的方法和步骤。
描述算法的例子:
问题:从上海去到北京。
其中的算法:做汽车、做飞机、或者徒步。
问题:喝茶。
其中的算法:先找到茶叶,再烧一壶开水,然后将茶叶放到杯子里,将开水倒入杯中,等茶叶泡好。
问题:开车。
其中的算法:首先要打开车门,驾驶员坐好,插上车钥匙,发动汽车。
Ⅲ 以整数加减法为例 举例说明什么是算理和算法
15-(2+3)-[7+(8-5)]
算理:有弧先拍纳算弧,无弧按顺序计斗缺算空贺辩。
算法:上式=15-5-(7+3)=15-5-10=10-10=0
Ⅳ 举例说明何谓算法,特点是什么评价一个算法的优劣,主要从哪些因素分析
评价算法优劣的四个分析因素:
1.正确性
能正确地实现预定的功能,满足具体问题的需要。处理数据使用的算法是否得当,能不能得到预想的结果。
2.易读性
易于阅读、理解和交流,便于调试、修改和扩充。写出的算法,能不能让别人看明白,能不能让别人明白算法的逻辑?如果通俗易懂,在系统调试和修改或者功能扩充的时候,使系统维护更为便捷。
3.健壮性
输入非法数据,算法也能适当地做出反应后进行处理,不会产生预料不到的运行结果。数据的形式多种多样,算法可能面临着接受各种各样的数据,当算法接收到不适合算法处理的数据,算法本身该如何处理呢?如果算法能够处理异常数据,处理能力越强,健壮性越好。
4.时空性
算法的时空性是该算法的时间性能和空间性能。主要是说算法在执行过程中的时间长短和空间占用多少问题。
算法处理数据过程中,不同的算法耗费的时间和内存空间是不同的。
(4)例是算法扩展阅读:
算法是对特定问题求解步骤的一种描述,它是指令的有限序列,其中每一条指令表示一个或多个操作。此外,一个算法还具有下列5个重要的特性。
(1)、有穷性
一个算法必须总是(对任何合法的输入值)在执行有穷步之后结束,且每一步都可在有穷时间内完成。
(2)、确定性
算法中每一条指令必须有明确的含义,读者理解时不会产生二义性。即对于相同的输入只能得到相同的输出。
(3)、可行性
一个算法是可行的,即算法中描述的操作都是可以通过已经实现的基本运算执行有限次来实现的。
(4)、输入
一个算法有零个或多个的输入,这些输入取自于某个特定的对象的集合。
(5)、输出
一个算法有一个或多个的输出,这些输出是同输入有着某种特定关系的量。
Ⅳ 什么是算法,都什么,举个例子,谢谢
根据我个人的理解:
算法就是解决问题的具体的方法和步骤,所以具有以下性质:
1、有穷性: 一个算法必须保证执行有限步之后结束(如果步骤无限,问题就无法解决)
2、确切性:步骤必须明确,说清楚做什么。
3、输入:即解决问题前我们所掌握的条件。
4、输出:输出即我们需要得到的答案。
5、可行性:逻辑不能错误,步骤必须有限,必须得到结果。
算法通俗的讲:就是解决问题的方法和步骤。在计算机发明之前便已经存在。只不过在计算机发明后,其应用变得更为广泛。通过简单的算法,利用电脑的计算速度,可以让问题变得简单。
譬如:计算 1×2×3×4。。。。×999999999×1000000000
如果人为计算,可想而知,即使你用N卡车的纸张都很难计算出来,即使算出来了,也很难保证其准确性。
如果用VB算法:
dim a as integer
a=1
For i =1 to 1000000000
a=a*i
next i
input a
就这样,简单的算法,通过计算机强大的计算能力,问题就解决了。
关于这段算法的解释:i每乘一次,其数值都会增大1,一直乘到1000000000,这样,就将从1到1000000000的每个数都乘了。而且每乘一次,就将结束赋给a,这样,a就代表了前面的相乘的所有结果,一直乘到1000000000。最后得到的a,就是我们想要的。
〓以下是网络复制过来的,如果你有足够耐心,可以参考一下。
算法(Algorithm)是一系列解决问题的清晰指令,也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。
算法可以理解为有基本运算及规定的运算顺序所构成的完整的解题步骤。或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤和序列可以解决一类问题。
一个算法应该具有以下五个重要的特征:
1、有穷性: 一个算法必须保证执行有限步之后结束;
2、确切性: 算法的每一步骤必须有确切的定义;
3、输入:一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定除了初始条件;
4、输出:一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的;
5、可行性: 算法原则上能够精确地运行,而且人们用笔和纸做有限次运算后即可完成。
计算机科学家尼克劳斯-沃思曾着过一本着名的书《数据结构十算法= 程序》,可见算法在计算机科学界与计算机应用界的地位。
[编辑本段]算法的复杂度
同一问题可用不同算法解决,而一个算法的质量优劣将影响到算法乃至程序的效率。算法分析的目的在于选择合适算法和改进算法。一个算法的评价主要从时间复杂度和空间复杂度来考虑。
时间复杂度
算法的时间复杂度是指算法需要消耗的时间资源。一般来说,计算机算法是问题规模n 的函数f(n),算法的时间复杂度也因此记做
T(n)=Ο(f(n))
因此,问题的规模n 越大,算法执行的时间的增长率与f(n) 的增长率正相关,称作渐进时间复杂度(Asymptotic Time Complexity)。
空间复杂度
算法的空间复杂度是指算法需要消耗的空间资源。其计算和表示方法与时间复杂度类似,一般都用复杂度的渐近性来表示。同时间复杂度相比,空间复杂度的分析要简单得多。
详见网络词条"算法复杂度"
[编辑本段]算法设计与分析的基本方法
1.递推法
递推法是利用问题本身所具有的一种递推关系求问题解的一种方法。它把问题分成若干步,找出相邻几步的关系,从而达到目的,此方法称为递推法。
2.递归
递归指的是一个过程:函数不断引用自身,直到引用的对象已知
3.穷举搜索法
穷举搜索法是对可能是解的众多候选解按某种顺序进行逐一枚举和检验,并从众找出那些符合要求的候选解作为问题的解。
4.贪婪法
贪婪法是一种不追求最优解,只希望得到较为满意解的方法。贪婪法一般可以快速得到满意的解,因为它省去了为找最优解要穷尽所有可能而必须耗费的大量时间。贪婪法常以当前情况为基础作最优选择,而不考虑各种可能的整体情况,所以贪婪法不要回溯。
5.分治法
把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。
6.动态规划法
动态规划是一种在数学和计算机科学中使用的,用于求解包含重叠子问题的最优化问题的方法。其基本思想是,将原问题分解为相似的子问题,在求解的过程中通过子问题的解求出原问题的解。动态规划的思想是多种算法的基础,被广泛应用于计算机科学和工程领域。
7.迭代法
迭代是数值分析中通过从一个初始估计出发寻找一系列近似解来解决问题(一般是解方程或者方程组)的过程,为实现这一过程所使用的方法统称为迭代法。
[编辑本段]算法分类
算法可大致分为基本算法、数据结构的算法、数论与代数算法、计算几何的算法、图论的算法、动态规划以及数值分析、加密算法、排序算法、检索算法、随机化算法、并行算法。
[编辑本段]举例
经典的算法有很多,如:"欧几里德算法"。
[编辑本段]算法经典专着
目前市面上有许多论述算法的书籍,其中最着名的便是《计算机程序设计艺术》(The Art Of Computer Programming) 以及《算法导论》(Introction To Algorithms)。
[编辑本段]算法的历史
“算法”即算法的大陆中文名称出自《周髀算经》;而英文名称Algorithm 来自于9世纪波斯数学家al-Khwarizmi,因为al-Khwarizmi在数学上提出了算法这个概念。“算法”原为"algorism",意思是阿拉伯数字的运算法则,在18世纪演变为"algorithm"。欧几里得算法被人们认为是史上第一个算法。 第一次编写程序是Ada Byron于1842年为巴贝奇分析机编写求解解伯努利方程的程序,因此Ada Byron被大多数人认为是世界上第一位程序员。因为查尔斯·巴贝奇(Charles Babbage)未能完成他的巴贝奇分析机,这个算法未能在巴贝奇分析机上执行。 因为"well-defined procere"缺少数学上精确的定义,19世纪和20世纪早期的数学家、逻辑学家在定义算法上出现了困难。20世纪的英国数学家图灵提出了着名的图灵论题,并提出一种假想的计算机的抽象模型,这个模型被称为图灵机。图灵机的出现解决了算法定义的难题,图灵的思想对算法的发展起到了重要作用的。
Ⅵ 什么叫算法算法有哪几种表示方法
算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。计算机科学家往往将“算法”一词的含义限定为此类“符号算法”。“算法”概念的初步定义:一个算法是解决一个问题的进程。而并不需要每次都发明一个解决方案。
已知的算法有很多,例如“分治法”、“枚举测试法”、“贪心算法”、“随机算法”等。
(6)例是算法扩展阅读
算法中的“分治法”
“分治法”是把一个复杂的问题拆分成两个较为简单的子问题,进而两个子问题又可以分别拆分成另外两个更简单的子问题,以此类推。问题不断被层层拆解。然后,子问题的解被逐层整合,构成了原问题的解。
高德纳曾用过一个邮局分发信件的例子对“分治法”进行了解释:信件根据不同城市区域被分进不同的袋子里;每个邮递员负责投递一个区域的信件,对应每栋楼,将自己负责的信件分装进更小的袋子;每个大楼管理员再将小袋子里的信件分发给对应的公寓。
Ⅶ 什么是算法什么是算理
1、算法是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。
不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。
2、算理就是计算过程中的道理,是指计算过程中思维方式,是解决为什么这样算的问题。如计算214+35时,就是根据数的组成进行演算的:214是由2个百、1个十和4个一组成的,35是由3个十和5个一组成的,所以先把4个一与5个一相加9个一,再把1个十与3个十相加得4个十,最后把2个百、4个十和9个一合并得249,这就是算理。
(7)例是算法扩展阅读:
算法常用设计模式
1、完全遍历法和不完全遍历法:在问题的解是有限离散解空间,且可以验证正确性和最优性时,最简单的算法就是把解空间的所有元素完全遍历一遍,逐个检测元素是否是我们要的解。
这是最直接的算法,实现往往最简单。但是当解空间特别庞大时,这种算法很可能导致工程上无法承受的计算量。这时候可以利用不完全遍历方法——例如各种搜索法和规划法——来减少计算量。
2、分治法:把一个问题分割成互相独立的多个部分分别求解的思路。这种求解思路带来的好处之一是便于进行并行计算。
3、动态规划法:当问题的整体最优解就是由局部最优解组成的时候,经常采用的一种方法。
4、贪心算法:常见的近似求解思路。当问题的整体最优解不是(或无法证明是)由局部最优解组成,且对解的最优性没有要求的时候,可以采用的一种方法。
5、简并法:把一个问题通过逻辑或数学推理,简化成与之等价或者近似的、相对简单的模型,进而求解的方法。
Ⅷ 算法是什么
算法是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令。
算法代表着用系统的方法描述解决问题的策略机制,也就是说,能够对一定规范的输入,在有限时间内获得所要求的输察并腊出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间,空间或效率来完成同样的任务。
算法中的指令描述的是一个计算。当其运行时能从一个初始状态和初始输入开始,经过一系列有限而清晰定义的状态,最终产生输出并停止于一个终态,一个状态到另一个状态的转移不一定是确定的。
算法思想:
1、递推法
递推是序列计算机中的一种常用算法,它是按照一定的规律来计算序列中的每个项,通常是通过计算机前面的一些项来得出序列中的指定项的值。其思想是把一个复杂蔽卜的庞大的计算过程转化为简单过程的多次重复,该算法利用了计算机速度快和不知疲倦的机器特点。
2、递归法
程序调用自身的编程技巧称为递归,一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法。它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需败滑要的多次重复计算。
以上内容参考:网络—算法