矩阵乘法算法
㈠ 矩阵的乘法运算怎么算
矩阵的乘法,首先要判定能不能作乘法,即要求作乘法时,前一个矩阵的列数与后一个矩阵的行数相等。
设矩阵A是m×n的、矩阵B是n×s的,乘法AB后得到矩阵C,则C为m×s的,如下图所示。
C11是由A的第一行与B的第一列对应相乘得到的,即C11=1×3+2×1+4×2=13。
C32是由A的第三行与B的第二列对应相乘得到的,即C32=2×2+5×6+1×1=35。
其他元素也是同理,分别取A的某行与B的某列,将对应元素相乘求出。
㈡ 矩阵乘法怎么算
比如乘法AB
一、
1、用A的第1行各个数与B的第1列各个数对应相乘后加起来,就是乘法结果中第1行第1列的数;
2、用A的第1行各个数与B的第2列各个数对应相乘后加起来,就是乘法结果中第1行第2列的数;
3、用A的第1行各个数与B的第3列各个数对应相乘后加起来,就是乘法结果中第1行第3列的数;
依次进行,(直到)用A的第1行各个数与B的第末列各个数对应相乘后加起来,就是乘法结果中第1行第末列的的数。
二、
1、用A的第2行各个数与B的第1列各个数对应相乘后加起来,就是乘法结果中第2行第1列的数;
2、用A的第2行各个数与B的第2列各个数对应相乘后加起来,就是乘法结果中第2行第2列的数;
3、用A的第2行各个数与B的第3列各个数对应相乘后加起来,就是乘法结果中第2行第3列的数;
依次进行,(直到)用A的第2行各个数与B的第末列各个数对应相乘后加起来,就是乘法结果中第2行第末列的的数。
依次进行,
(直到)用A的第末行各个数与B的第1列各个数对应相乘后加起来,就是乘法结果中第末行第1列的数;
用A的第末行各个数与B的第2列各个数对应相乘后加起来,就是乘法结果中第末行第2列的数;
用A的第末行各个数与B的第3列各个数对应相乘后加起来,就是乘法结果中第末行第3列的数;
依次进行,
(直到)用A的第末行各个数与B的第末列各个数对应相乘后加起来,就是乘法结果中第末行第末列的的数。
(2)矩阵乘法算法扩展阅读:
矩阵相乘最重要的方法是一般矩阵乘积。它只有在第一个矩阵的列数(column)和第二个矩阵的行数(row)相同时才有意义[1]。一般单指矩阵乘积时,指的便是一般矩阵乘积。一个m×n的矩阵就是m×n个数排成m行n列的一个数阵。由于它把许多数据紧凑的集中到了一起,所以有时候可以简便地表示一些复杂的模型。
参考资料:矩阵乘法_网络
㈢ 矩阵的乘法运算是什么
矩阵乘法运算一般单指矩阵乘积时,指的便是一般矩阵乘积。一个m×n的矩阵就是m×n个数排成m行n列的一个数阵。由于它把许多数据紧凑地集中到了一起,所以有时候可以简便地表示一些复杂的模型,如电力系统网络模型。
值得注意的是,当提及“矩阵相乘”或者“矩阵乘法”的时候,并不是指代这些特殊的乘积形式,而是定义中所描述的矩阵乘法。在描述这些特殊乘积时,使用这些运算的专用名称和符号来避免表述歧义。
(3)矩阵乘法算法扩展阅读:
矩阵作为高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用。
计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。
㈣ 矩阵乘法公式
|a11 a12 …… a1n||b11 b12 …… b1k|
|a21 a22 …… a2n||b21 b22 …… b2k|=
| . . …… . || . . …… . |
|am1 am2 …… amn||bn1 bn2 …… bnk|
|a11*b11+a12*b21+……+a1n*bn1 a11*b12+a12*b22+……+a1n*bn2
若A、B和C表示三个矩阵并有C=AB,A为n行m列,B为m行q列,则C为n行q列
则对于C矩阵任版一元素Cij都有权
Cij=ai1*b1j+ai2*b2j+ai3*b3j+...+ain*bnj
i=1,2,3,...,n,j=1,2,3,...q
(4)矩阵乘法算法扩展阅读:
1、当矩阵A的列数(column)等于矩阵B的行数(row)时,A与B可以相乘。
2、矩阵C的行数等于矩阵A的行数,C的列数等于B的列数。
3、乘积C的第m行第n列的元素等于矩阵A的第m行的元素与矩阵B的第n列对应元素乘积之和。