fft算法的基本思想
Ⅰ 一维实序列的快速傅里叶变换(FFT)
通过前面的分析,我们认识到傅里叶变换本身是复数运算,地球物理获取的数据大多数是实数,对于实数的变换原则上可直接套用复序列的FFT算法,但那样是把实数序列当作虚部为零的复数对待,显然需要存储虚部的零并进行无功的运算,既浪费了一倍的计算内存,又降低了约一半的运算速度。
为了不浪费不可不设的虚部内存和必然出现的复数运算,可否将一个实序列分为两个子实序列,分别作为实部与虚部构成一个复数序列,然后用复序列的FFT算法求其频谱,对合成的复序列频谱进行分离和加工得到原实序列的频谱呢?答案是肯定的,实现这一过程思路就是实序列FFT算法的基本思想。
1.实序列的傅里叶变换性质
对于一个N个样本的实序列x(k),其频谱为X(j),用Xr(j)和Xi(j)表示X(j)的实部和虚部, 表示X(j)的共轭,则
证明:已知 则
地球物理数据处理基础
上式两端取共轭,并注意到x(k)是实序列,则
地球物理数据处理基础
这就是实序列的傅里叶变换具有复共轭性。
其同样具有周期性,即
地球物理数据处理基础
2.一维实序列的FFT算法
(1)同时计算两个实序列的FFT算法
已知两个实序列h(k),g(k)(k=0,1,…,N-1),例如重磁异常平面数据中的两条剖面,或地震勘探中的两道地震记录,可以人为地构成一个复序列:
地球物理数据处理基础
设h(k)的频谱为H(j)=Hr(j)+iHi(j)
g(k)的频谱为G(j)=Gr(j)+iGi(j)
y(k)的频谱为Y(j)=Yr(j)+i Yi(j)
利用上节的复序列FFT算法,求得Y(j),即Yr(j)和Yi(j)已知,来寻找Hr(j),Hi(j),Gr(j),Gi(j)与Yr(j),Yi(j)之间的关系。
对式(8-22)作傅里叶变换:
地球物理数据处理基础
由于H(j),G(j)本身是复序列,所以不能仅从上式分离出H(j)和G(j)。应用Y(j)的周期性,容易得到
Y(N-j)=H(-j)+iG(-j)
上式取共轭:
地球物理数据处理基础
由于h(k),g(k)为实序列,对上式右端应用复共轭定理,得
地球物理数据处理基础
对式(8-23)展开,得
地球物理数据处理基础
对式(8-24)展开,并应用共轭关系,得
地球物理数据处理基础
把式(8-25)和式(8-26)与Y(j)=Yr(j)+iYi(j)进行对比,有
地球物理数据处理基础
整理得
地球物理数据处理基础
因此,对于两个实序列,通过构造一个复序列,应用复序列的FFT算法和式(8-28)的分离加工,即可得到两个实序列的频谱。
(2)计算2 N个数据点的实序列FFT算法
设有2N点的实序列u(k)(k=0,1,…,2N-1),首先按k的偶、奇分成两个子实序列,并构成复序列,即
地球物理数据处理基础
通过调用复序列FFT算法,求得y(k)的频谱为Y(j)。另记h(k),g(k)的频谱为H(j)和G(j)。
利用前面式(8-23)和式(8-24),容易求得
地球物理数据处理基础
下面分析用H(j),G(j)形成u(k)频谱的问题。记u(k)(k=0,1,…,2 N-1)的频谱为V(j),分析V(j),H(j),G(j)之间的关系,根据定义
地球物理数据处理基础
利用式(8-31)和式(8-34)可换算出u(k)的前N个频谱V(j)(j=0,1,…,N-1),还要设法求u(k)的后N个频谱V(N+j)(j=0,1,…,N-1)。利用实序列其频谱的复共轭和周期性:
(1)H(N)=H(0),G(N)=G(0),WN1=-1,得
地球物理数据处理基础
(2)由于u(k)(k=0,1,…,2N-1)是实序列,同样利用实序列其频谱的复共轭和周期性,用已求出的前N个频谱V(j)表示出后面的N-1个频谱V(N+j):
地球物理数据处理基础
由于0<2N-j<N,所以可从V(j)(j=0,1,…,N-1)中选出V(2N-j)(j=N+1,N+2,…,2 N-1),并直接取其共轭 即可得到V(N+1)~V(2 N-1),从而完成整个实序列频谱的计算。
总结以上叙述,一维实序列u(k)(k=0,1,…,2N-1)的FFT计算编程步骤如下:
(1)按偶、奇拆分实序列u(k),并构造复序列:
地球物理数据处理基础
(2)调用复序列的FFT计算y(k)的频谱Y(j)(j=0,1,…,N-1);
(3)用下式计算形成h(k),g(k)的频谱H(j)和G(j);
地球物理数据处理基础
(4)用下式换算实序列u(k)的频谱V(j)(j=0,1,…,2 N-1):
地球物理数据处理基础
[例3]求实序列样本u(k)={1,2,1,1,3,2,1,2}(k=0,1,…,7)的频谱。
解:按偶、奇拆分实序列u(k),按式(8-37)构造复序列c(j)(j=0,1,2,3),即
c(0)=1+2i; c(1)=1+i; c(2)=3+2i; c(3)=1+2i。
(1)调用复序列FFT求c(j)(j=0,1,2,3)的频谱Z(k)(k=0,1,2,3),得
Z(0)=6+7i; Z(1)=-3; Z(2)=2+i; Z(3)=-1。
地球物理数据处理基础
(3)运用公式(8-38)计算H(j),G(j):
地球物理数据处理基础
(4)根据式(8-39)求出u(k)(k=0,1,…,7)的8个频谱V(j)(j=0,1,…,7):
地球物理数据处理基础
地球物理数据处理基础
由上例可见,完成全部2 N个实序列频谱的计算只需做N次FFT计算,相比直接用复序列的FFT算法节省了约一半的计算量。
Ⅱ FFT原理的FFT基本原理
FFT是一种DFT的高效算法,称为快速傅立叶变换(fast Fourier transform)。FFT算法可分为按时间抽取算法和按频率抽取算法,先简要介绍FFT的基本原理。从DFT运算开始,说明FFT的基本原理。
DFT的运算为:
式中
由这种方法计算DFT对于X(K)的每个K值,需要进行4N次实数相乘和(4N-2)次相加,对于N个k值,共需N*N乘和N(4N-2)次实数相加。改进DFT算法,减小它的运算量,利用DFT中
的周期性和对称性,使整个DFT的计算变成一系列迭代运算,可大幅度提高运算过程和运算量,这就是FFT的基本思想。
FFT基本上可分为两类,时间抽取法和频率抽取法,而一般的时间抽取法和频率抽取法只能处理长度N=2^M的情况,另外还有组合数基四FFT来处理一般长度的FFT 设N点序列x(n),,将x(n)按奇偶分组,公式如下图
改写为:
一个N点DFT分解为两个 N/2点的DFT,继续分解,迭代下去,其运算量约为
其算法有如下规律
两个4点组成的8点DFT
四个2点组成的8点DFT
按时间抽取的8点DFT
原位计算
当数据输入到存储器中以后,每一级运算的结果仍然储存在同一组存储器中,直到最后输出,中间无需其它存储器
序数重排
对按时间抽取FFT的原位运算结构,当运算完毕时,这种结构存储单元A(1)、A(2),…,A(8)中正好顺序存放着X(0),X(1),X(2),…,X(7),因此可直接按顺序输出,但这种原位运算的输入x(n)却不能按这种自然顺序存入存储单元中,而是按X(0),X(4),X(2),X(6),…,X(7)的顺序存入存储单元,这种顺序看起来相当杂乱,然而它也是有规律的。当用二进制表示这个顺序时,它正好是“码位倒置”的顺序。
蝶形类型随迭代次数成倍增加
每次迭代的蝶形类型比上一次蝶代增加一倍,数据点间隔也增大一倍 频率抽取2FFT算法是按频率进行抽取的算法。
设N=2^M,将x(n)按前后两部分进行分解,
按K的奇偶分为两组,即
得到两个N/2 点的DFT运算。如此分解,并迭代,总的计算量和时间抽取(DIT)基2FFT算法相同。
算法规律如下:
蝶形结构和时间抽取不一样但是蝶形个数一样,同样具有原位计算规律,其迭代次数成倍减小 时,可采取补零使其成为
,或者先分解为两个p,q的序列,其中p*q=N,然后进行计算。 前面介绍,采用FFT算法可以很快算出全部N点DFT值,即z变换X(z)在z平面单位圆上的全部等间隔取样值。实际中也许①不需要计算整个单位圆上z变换的取样,如对于窄带信号,只需要对信号所在的一段频带进行分析,这时希望频谱的采样集中在这一频带内,以获得较高的分辨率,而频带以外的部分可不考虑,②或者对其它围线上的z变换取样感兴趣,例如语音信号处理中,需要知道z变换的极点所在频率,如极点位置离单位圆较远,则其单位圆上的频谱就很平滑,这时很难从中识别出极点所在的频率,如果采样不是沿单位圆而是沿一条接近这些极点的弧线进行,则在极点所在频率上的频谱将出现明显的尖峰,由此可较准确地测定极点频率。③或者要求能有效地计算当N是素数时序列的DFT,因此提高DFT计算的灵活性非常有意义。
螺旋线采样是一种适合于这种需要的变换,且可以采用FFT来快速计算,这种变换也称作Chirp-z变换。
Ⅲ FFT的公式是什么和算法是怎样实现
二维FFT相当于对行和列分别进行一维FFT运算。具体的实现办法如下:
先对各行逐一进行一维FFT,然后再对变换后的新矩阵的各列逐一进行一维FFT。相应的伪代码如下所示:
for (int i=0; i<M; i++)
FFT_1D(ROW[i],N);
for (int j=0; j<N; j++)
FFT_1D(COL[j],M);
其中,ROW[i]表示矩阵的第i行。注意这只是一个简单的记法,并不能完全照抄。还需要通过一些语句来生成各行的数据。同理,COL[i]是对矩阵的第i列的一种简单表示方法。
所以,关键是一维FFT算法的实现。下面讨论一维FFT的算法原理。
【1D-FFT的算法实现】
设序列h(n)长度为N,将其按下标的奇偶性分成两组,即he和ho序列,它们的长度都是N/2。这样,可以将h(n)的FFT计算公式改写如下 :
(A)
由于
所以,(A)式可以改写成下面的形式:
按照FFT的定义,上面的式子实际上是:
其中,k的取值范围是 0~N-1。
我们注意到He(k)和Ho(k)是N/2点的DFT,其周期是N/2。因此,H(k)DFT的前N/2点和后N/2点都可以用He(k)和Ho(k)来表示
Ⅳ FFT算法分几种
FFT算法分析FFT算法的基本原理是把长序列的DFT逐次分解为较短序列的DFT。按照抽取方式的不同可分为DIT-FFT(按时间抽取)和DIF-FFT(按频率抽取)算法。按照蝶形运算的构成不同可分为基2、基4、基8以及任意因子(2n,n为大于1的整数),基2、基4算法较为常用。 网上有帮助文档: http://www.5doc.com/doc/123035(右上角有点击下载)
Ⅳ 什么是FFT算法DSP是什么
FFT是快速傅里叶变换( Fast Fourier Transform )
DSP是数字信号处理 ( Digital Signal Processing )