广度优先算法java
❶ java连连看代码。 广度优先搜索算法实现,最小拐弯数,高手留下qq。
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class lianliankan implements ActionListener
{
JFrame mainFrame; //主面板
Container thisContainer;
JPanel centerPanel,southPanel,northPanel; //子面板
JButton diamondsButton[][] = new JButton[6][5];//游戏按钮数组
JButton exitButton,resetButton,newlyButton; //退出,重列,重新开始按钮 JLabel fractionLable=new JLabel("0"); //分数标签
JButton firstButton,secondButton; //分别记录两次被选中的按钮
int grid[][] = new int[8][7];//储存游戏按钮位置
static boolean pressInformation=false; //判断是否有按钮被选中
int x0=0,y0=0,x=0,y=0,fristMsg=0,secondMsg=0,validateLV; //游戏按钮的位置坐标 int i,j,k,n;//消除方法控制
public void init(){
mainFrame=new JFrame("JKJ连连看");
thisContainer = mainFrame.getContentPane();
thisContainer.setLayout(new BorderLayout());
centerPanel=new JPanel();
southPanel=new JPanel();
northPanel=new JPanel();
thisContainer.add(centerPanel,"Center");
thisContainer.add(southPanel,"South");
thisContainer.add(northPanel,"North");
centerPanel.setLayout(new GridLayout(6,5));
for(int cols = 0;cols < 6;cols++){
for(int rows = 0;rows < 5;rows++ ){
diamondsButton[cols][rows]=new JButton(String.valueOf(grid[cols+1][rows+1])); diamondsButton[cols][rows].addActionListener(this);
centerPanel.add(diamondsButton[cols][rows]);
}
}
exitButton=new JButton("退出");
exitButton.addActionListener(this);
resetButton=new JButton("重列");
resetButton.addActionListener(this);
newlyButton=new JButton("再来一局");
newlyButton.addActionListener(this);
southPanel.add(exitButton);
southPanel.add(resetButton);
1/8页
southPanel.add(newlyButton);
fractionLable.setText(String.valueOf(Integer.parseInt(fractionLable.getText())));
northPanel.add(fractionLable);
mainFrame.setBounds(280,100,500,450);
mainFrame.setVisible(true);
}
public void randomBuild() {
int randoms,cols,rows;
for(int twins=1;twins<=15;twins++) {
randoms=(int)(Math.random()*25+1);
for(int alike=1;alike<=2;alike++) {
cols=(int)(Math.random()*6+1);
rows=(int)(Math.random()*5+1);
while(grid[cols][rows]!=0) {
cols=(int)(Math.random()*6+1);
rows=
❷ 常见算法5、广度优先搜索 Breadth-First Search
1、定义
广度优先搜索 (Breadth-First Search)是最简便的图的搜索算法之一,又称 宽度优先搜索 ,这一算法也是很多重要的图算法的原型。广度优先搜索属于一种盲目搜寻法,目的是系统地展开并检查图中的所有节点,以找寻结果。换句话说,它并不考虑结果的可能位置,彻底地搜索整张图,直到找到结果为止。
2、应用
广度优先搜索被用于解决 最短路径问题(shortest-path problem) 。
广度优先搜索让你能够找出两样东西之间的最短距离,不过最短距离的含义有很多!使用广度优先搜索可以:
3、图简介
既然广度优先搜索是作用于图的一种算法,这里对图作一个简单的介绍,先不深入了解。
图由 节点 和 边 组成。一个节点可能与多个节点相连,这些节点被称为邻居。
广度优先算法的核心思想是:从初始节点开始,应用算符生成第一层节点,检查目标节点是否在这些后继节点中,若没有,再用产生式规则将所有第一层的节点逐一扩展,得到第二层节点,并逐一检查第二层节点中是否包含目标节点。若没有,再用算符逐一扩展第二层的所有节点……,如此依次扩展,检查下去,直到发现目标节点为止。即
广度优先搜索使用队列(queue)来实现,整个过程也可以看做一个倒立的树形。
例:假如你需要在你的人际关系网中寻找是否有职业为医生的人,图如下:
而使用广度优先搜索工作原理大概如下 :
1、Python 3 :
2、php :
1、《算法图解》 https://www.manning.com/books/grokking-algorithms
2、SplQueue类: https://www.php.net/manual/zh/class.splqueue.php
❸ java连连看使用广度优先算法实现,求具体解释广度优先算法和代码
void bfs(TreeNode t){
Queue q = new LinkedList<TreeNode>();
q.enqueue(t);
while(!q.isEmpty && q.peek().element != null){
TreeNode temp = q.dequeue();
System.out.println(temp.element);
q.enqueue(temp.leftchild);
q.enqueue(temp.rightchild);
}
}
class TreeNode <AnyType>{
AnyType element;
TreeNode rightchild;
TreeNode leftchild;
}
❹ 广度优先算法
广度优先算法(Breadth-First Search),同广度优先搜索,又称作宽度优先搜索,或横向优先搜索,简称BFS,是一种图形搜索算法。简单的说,BFS是从根节点开始,沿着树的宽度遍历树的节点,如果发现目标,则演算终止。广度优先搜索的实现一般采用open-closed表。
❺ 广度优先遍历是什么
1.广度优先遍历的思想广度优先遍历类似树的按层次遍历。设初始状态时图中的所有顶点未被访问,则算法思想为:首先访问图中某指定的起始顶点v,并将其标记为已访问过,然后由v出发依次访问v的各个未被访问的邻接点v1,v2,…,vk;并将其均标识为已访问过,再分别从v1,v2,…,vk出发依次访问它们未被访问的邻接点,并使“先被访问顶点的邻接点”先于“后被访问顶点的邻接点”被访问。直至图中所有与顶点v路径相通的顶点都被访问到。
若G是连通图,则遍历完成;否则,在图G中另选一个尚未访问的顶点作为新源点继续上述搜索过程,直至图G中所有顶点均被访问为止。
2.广度优先遍历示例例如,对图7-18(a)所示的图G,假设指定从顶点v1开始进行广度优先遍历,首先访问v1,因与v1相邻并且未被访问过的顶点有v2和v6,则访问v2和v6,然后访问与v2相邻并未访问的邻接点v2,v7,再访问与v6相邻并且未被访问过的邻接点v5,按这样的次序依次访问与v2相邻并且未被访问过的邻接点v4,v8,与v7相邻并且未被访问过的邻接点v9,此时,与v5,v4,v8,v9相邻并且未被访问过的邻接点没有了,即图G中的所有顶点访问完,其遍历序列为:v1->v2->v6->v2->v7->v5->v4->v8->v9。这种顺序不是唯一的,如果从v1出发后,相邻的多个顶点优先选择序号大的顶点访问,其遍历序列为:v1->v6->v2->v5->v7->v2->v4->v9->v8。同理,图7-18(b)是假设从v1开始,相邻的多个顶点优先选择序号小的顶点访问,其遍历序列为:v1->v2->v2->v4->v5->v6->v7->v8;相邻的多个顶点优先选择序号大的顶点访问,其遍历序列为:v1->v2->v2->v7->v6->v5->v4->v8。图7-18(c)假设从a开始,相邻的多个顶点优先选择ASCII码小的顶点访问,其遍历序列为:a->b->d->e->f->c->g;相邻的多个顶点优先选择ASCII码大的顶点访问,其遍历序列为:a->f->e->d->b->g->c。
2.广度优先遍历的算法在广度优先遍历中,要求先被访问的顶点其邻接点也被优先访问,因此,必须对每个顶点的访问顺序进行记录,以便后面按此顺序访问各顶点的邻接点。应利用一个队列结构记录顶点的访问顺序,将访问的每个顶点入队,然后再依次出队。
在广度优先遍历过程中,为了避免重复访问某个顶点,也需要创建一个一维数组visited[n](n是图中顶点的数目),用来记录每个顶点是否已被访问过。
❻ 无向有权的图的深度、广度优先遍历怎么做的啊,他的遍历序列怎么求呢
总结深度优先与广度优先的区别
1、区别
1) 二叉树的深度优先遍历的非递归的通用做法是采用栈,广度优先遍历的非递归的通用做法是采用队列。
2) 深度优先遍历:对每一个可能的分支路径深入到不能再深入为止,而且每个结点只能访问一次。要特别注意的是,二叉树的深度优先遍历比较特殊,可以细分为先序遍历、中序遍历、后序遍历。具体说明如下:
先序遍历:对任一子树,先访问根,然后遍历其左子树,最后遍历其右子树。
中序遍历:对任一子树,先遍历其左子树,然后访问根,最后遍历其右子树。
后序遍历:对任一子树,先遍历其左子树,然后遍历其右子树,最后访问根。
广度优先遍历:又叫层次遍历,从上往下对每一层依次访问,在每一层中,从左往右(也可以从右往左)访问结点,访问完一层就进入下一层,直到没有结点可以访问为止。
3)深度优先搜素算法:不全部保留结点,占用空间少;有回溯操作(即有入栈、出栈操作),运行速度慢。
广度优先搜索算法:保留全部结点,占用空间大; 无回溯操作(即无入栈、出栈操作),运行速度快。
❼ java如何实现 深度优先 广度优先
下面是我修改了滴源码,是基于一张简单的地图,在地图上搜索目的节点,依次用深度优先、广度优先、Dijkstra算法实现。
import java.util.ArrayList;
import java.util.HashMap;
import java.util.LinkedList;
import java.util.PriorityQueue;
import java.util.Stack;
/**
*
* @author yinzhuo
*
*/
public class Arithmatic {
boolean flag = true;
// 一张地图
static int[][] map = new int[][]// 地图数组
{
{ 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0 },
{ 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0 },
{ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0 },
{ 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0 },
{ 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0 },
{ 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0 },
{ 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0 },
{ 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0 },
{ 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0 },
{ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0 },
{ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0 },
{ 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } };
❽ 基本算法——深度优先搜索(DFS)和广度优先搜索(BFS)
深度优先搜索和广度优先搜索,都是图形搜索算法,它两相似,又却不同,在应用上也被用到不同的地方。这里拿一起讨论,方便比较。
一、深度优先搜索
深度优先搜索属于图算法的一种,是一个针对图和树的遍历算法,英文缩写为DFS即Depth First Search。深度优先搜索是图论中的经典算法,利用深度优先搜索算法可以产生目标图的相应拓扑排序表,利用拓扑排序表可以方便的解决很多相关的图论问题,如最大路径问题等等。一般用堆数据结构来辅助实现DFS算法。其过程简要来说是对每一个可能的分支路径深入到不能再深入为止,而且每个节点只能访问一次。
基本步奏
(1)对于下面的树而言,DFS方法首先从根节点1开始,其搜索节点顺序是1,2,3,4,5,6,7,8(假定左分枝和右分枝中优先选择左分枝)。
(2)从stack中访问栈顶的点;
(3)找出与此点邻接的且尚未遍历的点,进行标记,然后放入stack中,依次进行;
(4)如果此点没有尚未遍历的邻接点,则将此点从stack中弹出,再按照(3)依次进行;
(5)直到遍历完整个树,stack里的元素都将弹出,最后栈为空,DFS遍历完成。
二、广度优先搜索
广度优先搜索(也称宽度优先搜索,缩写BFS,以下采用广度来描述)是连通图的一种遍历算法这一算法也是很多重要的图的算法的原型。Dijkstra单源最短路径算法和Prim最小生成树算法都采用了和宽度优先搜索类似的思想。其别名又叫BFS,属于一种盲目搜寻法,目的是系统地展开并检查图中的所有节点,以找寻结果。换句话说,它并不考虑结果的可能位置,彻底地搜索整张图,直到找到结果为止。基本过程,BFS是从根节点开始,沿着树(图)的宽度遍历树(图)的节点。如果所有节点均被访问,则算法中止。一般用队列数据结构来辅助实现BFS算法。
基本步奏
(1)给出一连通图,如图,初始化全是白色(未访问);
(2)搜索起点V1(灰色);
(3)已搜索V1(黑色),即将搜索V2,V3,V4(标灰);
(4)对V2,V3,V4重复以上操作;
(5)直到终点V7被染灰,终止;
(6)最短路径为V1,V4,V7.
❾ 实现图的广度优先搜索算法需使用的辅助数据结构是什么
广度优先用队列,深度优先用栈。简单说明如下:
广度优先:当一个节点被加入队列时,要标记为已遍历,遍历过程中,对于队列第一个元素,遍历其所有能够能一步达到的节点,如果是标记未遍历的,将其加入队列,从第一个元素出发所有能一步直接达到的节点遍历结束后将这个元素出列。
深度优先:当遍历到某个节点A时,如果是标记未遍历,将其入栈,遍历它能够一步直接达到的节点,如果是标记未遍历,将其入栈且标记为已遍历,然后对其进行类似A的操作,否则找能够一步直接达到的节点进行类似操作。直到所有能够一步直接达到的节点都已遍历,将A出栈。
这里使用“能够能一步达到的节点”而非“与其相邻的节点”是考虑到有向图因素。
具体可以找个图,然后使用广度和深度算法搜索一遍,每步自己手工修改队列和栈就明白怎么回事了。