a寻路算法代码
‘壹’ A*path与Dijkstra寻路、迷宫生成
假设有人想从 A 点移动到一墙之隔的 B 点,如下图,绿色的是起点 A,红色是终点 B,蓝色方块是中间的墙。
在 A*寻路算法中,我们通过从绿色起点 A 开始,检查相邻方格的方式,向外扩展直到找到目标。
我们做如下操作开始搜索:
通常对于方格节点,我们认为水平/垂直移动一格耗费为 10,对角线移动耗费为 14。
G = 从 起点 沿着生成的路径,移动到当前节点的总移动耗费。
H = 从当前节点移动到 终点 的移动耗费估算。这经常被称为启发式的,因为它只是个猜测,我们没办法事先知道路径的实际长度。
对于方格节点通常使用 曼哈顿方法 ,它计算从当前格到 终点 之间水平和垂直的方格的数量总和,忽略对角线方向和障碍物。然后把结果乘以水平/垂直的移动耗费。
对于允许走对角线的节点使用 对角线方法 ,允许任意走的节点使用 欧几里得方法
当H值总为0时,退化为Dijkstra寻路算法
先构建一个如下的模型图,其中黑色为墙壁,红色为路径节点。墙可以为一个方形格子也可以仅仅是一条线(为方格时对角线上的墙壁始终无法被打通)。
先构建一个除了外圈为黑色墙壁,内部全是灰色通路的迷宫模型
‘贰’ 梦幻西游自动寻路的寻路算法怎么算
A*寻路算法 A*(A-Star)算法是一种静态路网中求解最短路最有效的方法。
公式表示为: f(n)=g(n)+h(n),
其中f(n) 是节点n从初始点到目标点的估价函数,
g(n) 是在状态空间中从初始节点到n节点的实际代价,
h(n)是从n到目标节点最佳路径的估计代价。
保证找到最短路径(最优解的)条件,关键在于估价函数h(n)的选取:
估价值h(n)<= n到目标节点的距离实际值,这种情况下,搜索的点数多,搜索范围大,效率低。但能得到最优解。
如果 估价值>实际值, 搜索的点数少,搜索范围小,效率高,但不能保证得到最优解。
估价值与实际值越接近,估价函数取得就越好。
例如对于几何路网来说,可以取两节点间欧几理德距离(直线距离)做为估价值,即f=g(n)+sqrt((dx-nx)*(dx-nx)+(dy-ny)*(dy-ny));这样估价函数f在g值一定的情况下,会或多或少的受估价值h的制约,节点距目标点近,h值小,f值相对就小,能保证最短路的搜索向终点的方向进行。明显优于Dijstra算法的毫无无方向的向四周搜索。
conditions of heuristic
Optimistic (must be less than or equal to the real cost)
As close to the real cost as possible
主要搜索过程:
创建两个表,OPEN表保存所有已生成而未考察的节点,CLOSED表中记录已访问过的节点。
遍历当前节点的各个节点,将n节点放入CLOSE中,取n节点的子节点X,->算X的估价值->
While(OPEN!=NULL)
{
从OPEN表中取估价值f最小的节点n;
if(n节点==目标节点) break;
else
{
if(X in OPEN) 比较两个X的估价值f //注意是同一个节点的两个不同路径的估价值
if( X的估价值小于OPEN表的估价值 )
更新OPEN表中的估价值; //取最小路径的估价值
if(X in CLOSE) 比较两个X的估价值 //注意是同一个节点的两个不同路径的估价值
if( X的估价值小于CLOSE表的估价值 )
更新CLOSE表中的估价值; 把X节点放入OPEN //取最小路径的估价值
if(X not in both)
求X的估价值;
并将X插入OPEN表中; //还没有排序
}
将n节点插入CLOSE表中;
按照估价值将OPEN表中的节点排序; //实际上是比较OPEN表内节点f的大小,从最小路径的节点向下进行。
启发式搜索其实有很多的算法,比如:局部择优搜索法、最好优先搜索法等等。当然A*也是。这些算法都使用了启发函数,但在具体的选取最佳搜索节点时的策略不同。象局部择优搜索法,就是在搜索的过程中选取“最佳节点”后舍弃其他的兄弟节点,父亲节点,而一直得搜索下去。这种搜索的结果很明显,由于舍弃了其他的节点,可能也把最好的
节点都舍弃了,因为求解的最佳节点只是在该阶段的最佳并不一定是全局的最佳。最好优先就聪明多了,他在搜索时,便没有舍弃节点(除非该节点是死节点),在每一步的估价
中都把当前的节点和以前的节点的估价值比较得到一个“最佳的节点”。这样可以有效的防止“最佳节点”的丢失。那么A*算法又是一种什么样的算法呢?其实A*算法也是一种最
好优先的算法。只不过要加上一些约束条件罢了。由于在一些问题求解时,我们希望能够求解出状态空间搜索的最短路径,也就是用最快的方法求解问题,A*就是干这种事情的!
我们先下个定义,如果一个估价函数可以找出最短的路径,我们称之为可采纳性。A*算法是一个可采纳的最好优先算法。A*算法的估价函数可表示为:
f'(n) = g'(n) + h'(n)
这里,f'(n)是估价函数,g'(n)是起点到终点的最短路径值,h'(n)是n到目标的最断路经的启发值。由于这个f'(n)其实是无法预先知道的,所以我们用前面的估价函数f(n)做
近似。g(n)代替g'(n),但 g(n)>=g'(n)才可(大多数情况下都是满足的,可以不用考虑),h(n)代替h'(n),但h(n)<=h'(n)才可(这一点特别的重要)。可以证明应用这样的估价
函数是可以找到最短路径的,也就是可采纳的。我们说应用这种估价函数的最好优先算法就是A*算法。哈。你懂了吗?肯定没懂。接着看。
举一个例子,其实广度优先算法就是A*算法的特例。其中g(n)是节点所在的层数,h(n)=0,这种h(n)肯定小于h'(n),所以由前述可知广度优先算法是一种可采纳的。实际也是
。当然它是一种最臭的A*算法。
再说一个问题,就是有关h(n)启发函数的信息性。h(n)的信息性通俗点说其实就是在估计一个节点的值时的约束条件,如果信息越多或约束条件越多则排除的节点就越多,估价函
数越好或说这个算法越好。这就是为什么广度优先算法的那么臭的原因了,谁叫它的h(n)=0,一点启发信息都没有。但在游戏开发中由于实时性的问题,h(n)的信息越多,它的计
算量就越大,耗费的时间就越多。就应该适当的减小h(n)的信息,即减小约束条件。但算法的准确性就差了,这里就有一个平衡的问题。
}
‘叁’ 关于VB中A*寻路算法的提问
定理:穿越于一组互不相交的多边形障碍物S之间、从Pstart通往Pgoal的任何一条最短路径,都是一条多边形路径,其中所有的内部顶点都是S的顶点。
推广:所有最短路径问题。
结论:只有普遍适用的算法,没有普遍适用的代码。
补充:只有问题实例化才能写出适用代码。
你所遇到的可不只是寻路问题,二维寻路相对简单点,我猜测你的问题产生在“碰撞”上,建议你多学习一下“计算几何学”、“计算机图形学”、“机器人运动学”等,当然,编程的基本功也很重要。其实,带有运动的游戏编程是很复杂的。你也可以将你的程序包发给我等我有时间帮你看看。
‘肆’ 如何基于Cocos2d-x v3.x实现A星寻路算法
实现A星算法
根据算法,第一步是添加当前坐标到open列表。还需要三个辅助方法:
- 一个方法用来插入一个ShortestPathStep对象到适当的位置(有序的F值)
- 一个方法用来计算从一个方块到相邻方块的移动数值
- 一个方法是根据"曼哈顿距离"算法,计算方块的H值
打开CatSprite.cpp文件,添加如下方法:
void CatSprite::insertInOpenSteps(CatSprite::ShortestPathStep *step)
{
int stepFScore = step->getFScore();
ssize_t count = _spOpenSteps.size();
ssize_t i = 0;
for (; i < count; ++i)
{
if (stepFScore <= _spOpenSteps.at(i)->getFScore())
{
break;
}
}
_spOpenSteps.insert(i, step);
}
int CatSprite::computeHScoreFromCoordToCoord(const Point &fromCoord, const Point &toCoord)
{
// 这里使用曼哈顿方法,计算从当前步骤到达目标步骤,在水平和垂直方向总的步数
// 忽略了可能在路上的各种障碍
return abs(toCoord.x - fromCoord.x) + abs(toCoord.y - fromCoord.y);
}
int CatSprite::(const ShortestPathStep *fromStep, const ShortestPathStep *toStep)
{
// 因为不能斜着走,而且由于地形就是可行走和不可行走的成本都是一样的
// 如果能够对角移动,或者有沼泽、山丘等等,那么它必须是不同的
return 1;
}
接下来,需要一个方法去获取给定方块的所有相邻可行走方块。因为在这个游戏中,HelloWorld管理着地图,所以在那里添加方法。打开HelloWorldScene.cpp文件,添加如下方法:
PointArray *HelloWorld::(const Point &tileCoord) const
{
PointArray *tmp = PointArray::create(4);
// 上
Point p(tileCoord.x, tileCoord.y - 1);
if (this->isValidTileCoord(p) && !this->isWallAtTileCoord(p))
{
tmp->addControlPoint(p);
}
// 左
p.setPoint(tileCoord.x - 1, tileCoord.y);
if (this->isValidTileCoord(p) && !this->isWallAtTileCoord(p))
{
tmp->addControlPoint(p);
}
// 下
p.setPoint(tileCoord.x, tileCoord.y + 1);
if (this->isValidTileCoord(p) && !this->isWallAtTileCoord(p))
{
tmp->addControlPoint(p);
}
// 右
p.setPoint(tileCoord.x + 1, tileCoord.y);
if (this->isValidTileCoord(p) && !this->isWallAtTileCoord(p))
{
tmp->addControlPoint(p);
}
return tmp;
}
可以继续CatSprite.cpp中的moveToward方法了,在moveToward方法的后面,添加如下代码:
bool pathFound = false;
_spOpenSteps.clear();
_spClosedSteps.clear();
// 首先,添加猫的方块坐标到open列表
this->insertInOpenSteps(ShortestPathStep::createWithPosition(fromTileCoord));
do
{
// 得到最小的F值步骤
// 因为是有序列表,第一个步骤总是最小的F值
ShortestPathStep *currentStep = _spOpenSteps.at(0);
// 添加当前步骤到closed列表
_spClosedSteps.pushBack(currentStep);
// 将它从open列表里面移除
// 需要注意的是,如果想要先从open列表里面移除,应小心对象的内存
_spOpenSteps.erase(0);
// 如果当前步骤是目标方块坐标,那么就完成了
if (currentStep->getPosition() == toTileCoord)
{
pathFound = true;
ShortestPathStep *tmpStep = currentStep;
CCLOG("PATH FOUND :");
do
{
CCLOG("%s", tmpStep->getDescription().c_str());
tmpStep = tmpStep->getParent(); // 倒退
} while (tmpStep); // 直到没有上一步
_spOpenSteps.clear();
_spClosedSteps.clear();
break;
}
// 得到当前步骤的相邻方块坐标
PointArray *adjSteps = _layer->(currentStep->getPosition());
for (ssize_t i = 0; i < adjSteps->count(); ++i)
{
ShortestPathStep *step = ShortestPathStep::createWithPosition(adjSteps->getControlPointAtIndex(i));
// 检查步骤是不是已经在closed列表
if (this->getStepIndex(_spClosedSteps, step) != -1)
{
continue;
}
// 计算从当前步骤到此步骤的成本
int moveCost = this->(currentStep, step);
// 检查此步骤是否已经在open列表
ssize_t index = this->getStepIndex(_spOpenSteps, step);
// 不在open列表,添加它
if (index == -1)
{
// 设置当前步骤作为上一步操作
step->setParent(currentStep);
// G值等同于上一步的G值 + 从上一步到这里的成本
step->setGScore(currentStep->getGScore() + moveCost);
// H值即是从此步骤到目标方块坐标的移动量估算值
step->setHScore(this->computeHScoreFromCoordToCoord(step->getPosition(), toTileCoord));
// 按序添加到open列表
this->insertInOpenSteps(step);
}
else
{
// 获取旧的步骤,其值已经计算过
step = _spOpenSteps.at(index);
// 检查G值是否低于当前步骤到此步骤的值
if ((currentStep->getGScore() + moveCost) < step->getGScore())
{
// G值等同于上一步的G值 + 从上一步到这里的成本
step->setGScore(currentStep->getGScore() + moveCost);
// 因为G值改变了,F值也会跟着改变
// 所以为了保持open列表有序,需要将此步骤移除,再重新按序插入
// 在移除之前,需要先保持引用
step->retain();
// 现在可以放心移除,不用担心被释放
_spOpenSteps.erase(index);
// 重新按序插入
this->insertInOpenSteps(step);
// 现在可以释放它了,因为open列表应该持有它
step->release();
}
}
}
} while (_spOpenSteps.size() > 0);
if (!pathFound)
{
SimpleAudioEngine::getInstance()->playEffect("hitWall.wav");
}
添加以下方法:
ssize_t CatSprite::getStepIndex(const cocos2d::Vector<CatSprite::ShortestPathStep *> &steps, const CatSprite::ShortestPathStep *step)
{
for (ssize_t i = 0; i < steps.size(); ++i)
{
if (steps.at(i)->isEqual(step))
{
return i;
}
}
return -1;
}
‘伍’ 求一个A*算法的C语言或C++代码,小弟不胜感激,谢谢
1#include <iostream>
2#include <queue>
3usingnamespace std;
4
5struct knight{
6int x,y,step;
7int g,h,f;
8booloperator< (const knight & k) const{ //重载比较运算符
9return f > k.f;
10 }
11}k;
12bool visited[8][8]; //已访问标记(关闭列表)
13int x1,y1,x2,y2,ans; //起点(x1,y1),终点(x2,y2),最少移动次数ans
14int dirs[8][2]={{-2,-1},{-2,1},{2,-1},{2,1},{-1,-2},{-1,2},{1,-2},{1,2}};//8个移动方向
15priority_queue<knight> que; //最小优先级队列(开启列表)
16
17boolin(const knight & a){ //判断knight是否在棋盘内
18if(a.x<0|| a.y<0|| a.x>=8|| a.y>=8)
19returnfalse;
20returntrue;
21}
22int Heuristic(const knight &a){ //manhattan估价函数
23return (abs(a.x-x2)+abs(a.y-y2))*10;
24}
25void Astar(){ //A*算法
26 knight t,s;
27while(!que.empty()){
28 t=que.top(),que.pop(),visited[t.x][t.y]=true;
29if(t.x==x2 && t.y==y2){
30 ans=t.step;
31break;
32 }
33for(int i=0;i<8;i++){
34 s.x=t.x+dirs[i][0],s.y=t.y+dirs[i][1];
35if(in(s) &&!visited[s.x][s.y]){
36 s.g = t.g +23; //23表示根号5乘以10再取其ceil
37 s.h = Heuristic(s);
38 s.f = s.g + s.h;
39 s.step = t.step +1;
40 que.push(s);
41 }
42 }
43 }
44}
45int main(){
46char line[5];
47while(gets(line)){
48 x1=line[0]-'a',y1=line[1]-'1',x2=line[3]-'a',y2=line[4]-'1';
49 memset(visited,false,sizeof(visited));
50 k.x=x1,k.y=y1,k.g=k.step=0,k.h=Heuristic(k),k.f=k.g+k.h;
51while(!que.empty()) que.pop();
52 que.push(k);
53 Astar();
54 printf("To get from %c%c to %c%c takes %d knight moves.\n",line[0],line[1],line[3],line[4],ans);
55 }
56return0;
57}
58
‘陆’ 三维点最短路径寻路算法求助
题目描述得不够清楚啊,若干个点就是能作为中途点的那些点么?
如果所有的点都能作为中途点,当然走直径,直接走A到B的直线。
否则,如果只有几个,只能用启发式或者广度搜索吧,因为还有可能根本就没有解。
如果中途点不多的话,可以直接从A出发,计算不超过L距离的那些中途点,然后以那些中途点为出发点,继续计算不超过L距离的点(走过的点就不计入),直到遇到B为止。这种方法就是广度搜索,在同一层距离最短的则为最短路径。
如果中途点过多,无法这样计算的话,限定范围。
‘柒’ 从原点出发,遍历50个点,再回到原点的最短路径,求matlab程序
据 Drew 所知最短路经算法现在重要的应用有计算机网络路由算法,机器人探路,交通路线导航,人工智能,游戏设计等等。美国火星探测器核心的寻路算法就是采用的D*(D Star)算法。
最短路经计算分静态最短路计算和动态最短路计算。
静态路径最短路径算法是外界环境不变,计算最短路径。主要有Dijkstra算法,A*(A Star)算法。
动态路径最短路是外界环境不断发生变化,即不能计算预测的情况下计算最短路。如在游戏中敌人或障碍物不断移动的情况下。典型的有D*算法。这是Drew程序实现的10000个节点的随机路网三条互不相交最短路真实路网计算K条路径示例:节点5696到节点3006,三条最快速路,可以看出路径基本上走环线或主干路。黑线为第一条,兰线为第二条,红线为第三条。约束条件系数为1.2。共享部分路段。 显示计算部分完全由Drew自己开发的程序完成。 参见 K条路算法测试程序
Dijkstra算法求最短路径:
Dijkstra算法是典型最短路算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。
Dijkstra算法是很有代表性的最短路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。
Dijkstra一般的表述通常有两种方式,一种用永久和临时标号方式,一种是用OPEN, CLOSE表方式,Drew为了和下面要介绍的 A* 算法和 D* 算法表述一致,这里均采用OPEN,CLOSE表的方式。
大概过程:
创建两个表,OPEN, CLOSE。
OPEN表保存所有已生成而未考察的节点,CLOSED表中记录已访问过的节点。
1. 访问路网中里起始点最近且没有被检查过的点,把这个点放入OPEN组中等待检查。
2. 从OPEN表中找出距起始点最近的点,找出这个点的所有子节点,把这个点放到CLOSE表中。
3. 遍历考察这个点的子节点。求出这些子节点距起始点的距离值,放子节点到OPEN表中。
4. 重复2,3,步。直到OPEN表为空,或找到目标点。
这是在drew 程序中4000个节点的随机路网上Dijkstra算法搜索最短路的演示,黑色圆圈表示经过遍历计算过的点由图中可以看到Dijkstra算法从起始点开始向周围层层计算扩展,在计算大量节点后,到达目标点。所以速度慢效率低。
提高Dijkstra搜索速度的方法很多,据Drew所知,常用的有数据结构采用Binary heap的方法,和用Dijkstra从起始点和终点同时搜索的方法。
推荐网页:http://www.cs.ecnu.e.cn/assist/js04/ZJS045/ZJS04505/zjs045050a.htm
简明扼要介绍Dijkstra算法,有图解显示和源码下载。
A*(A Star)算法:启发式(heuristic)算法
A*(A-Star)算法是一种静态路网中求解最短路最有效的方法。
公式表示为: f(n)=g(n)+h(n),
其中f(n) 是节点n从初始点到目标点的估价函数,
g(n) 是在状态空间中从初始节点到n节点的实际代价,
h(n)是从n到目标节点最佳路径的估计代价。
保证找到最短路径(最优解的)条件,关键在于估价函数h(n)的选取:
估价值h(n)<= n到目标节点的距离实际值,这种情况下,搜索的点数多,搜索范围大,效率低。但能得到最优解。
如果 估价值>实际值, 搜索的点数少,搜索范围小,效率高,但不能保证得到最优解。
估价值与实际值越接近,估价函数取得就越好。
例如对于几何路网来说,可以取两节点间欧几理德距离(直线距离)做为估价值,即f=g(n)+sqrt((dx-nx)*(dx-nx)+(dy-ny)*(dy-ny));这样估价函数f在g值一定的情况下,会或多或少的受估价值h的制约,节点距目标点近,h值小,f值相对就小,能保证最短路的搜索向终点的方向进行。明显优于Dijstra算法的毫无无方向的向四周搜索。
conditions of heuristic
Optimistic (must be less than or equal to the real cost)
As close to the real cost as possible
主要搜索过程:
创建两个表,OPEN表保存所有已生成而未考察的节点,CLOSED表中记录已访问过的节点。
遍历当前节点的各个节点,将n节点放入CLOSE中,取n节点的子节点X,->算X的估价值->
While(OPEN!=NULL)
{
从OPEN表中取估价值f最小的节点n;
if(n节点==目标节点) break;
else
{
if(X in OPEN) 比较两个X的估价值f //注意是同一个节点的两个不同路径的估价值
if( X的估价值小于OPEN表的估价值 )
更新OPEN表中的估价值; //取最小路径的估价值
if(X in CLOSE) 比较两个X的估价值 //注意是同一个节点的两个不同路径的估价值
if( X的估价值小于CLOSE表的估价值 )
更新CLOSE表中的估价值; 把X节点放入OPEN //取最小路径的估价值
if(X not in both)
求X的估价值;
并将X插入OPEN表中;//还没有排序
}
将n节点插入CLOSE表中;
按照估价值将OPEN表中的节点排序; //实际上是比较OPEN表内节点f的大小,从最小路径的节点向下进行。
}
‘捌’ lua语言a星寻路算法路径怎么平滑
在项目中遇到了自动寻路的需求,于是决定开始学习一下A星,对于A星我也没有深究,只能说是勉强搞定了需求,在这和大家分享一下,相互进步,
A星有个公式 f(x) = g(x) + h(x)
,搞清楚这个公式就好办了,f(x)就是当前位置到下一个位置的总价值,g(x)表示实际价,这是说这一部分代价是确定的,h(x)表示估价值,就是说我
从下一个位置到到终点的代价是未知的,所以叫估价值,如图中所示,黑色格子表示当前位置,绿色格子表示下一步可能到达的位置,即上、下、左、右这几个方
向,红色格子表示终点,褐色表示障碍物,现在要从黑色格子到达红色格子,那么黑色格子的下一步肯定是绿色格子当中的一个,黑色格子到绿色格子之间是相挨着
的,所以我们可以很明确的知道它的实际代价为1(移动一步的代价)即g(x),绿色格子到红色格子之间隔着很长的距离,中间还有障碍物,所以这个代价是未
知的,即h(x),所以总的代价就为f(x) = g(x) +
h(x),我们看到周围有4个绿色的格子,到底走那一步比较好呢,所以我们要把这4个格子的f(x)值都求出来,然后进行排序,选择f(x)值最小的,即
总代价最少的那个格子,以此方法继续下去,直到到达终点 或者 地图上没有绿色格子了
下面来看一下这个工具类,g(x)和h(x)要选的比较合适,一般就是采用的曼哈顿算法,即两点在x方向和y方向的距离之和,
-- Filename: PathUtil.lua
-- Author: bzx
-- Date: 2014-07-01
-- Purpose: 寻路
mole("PathUtil", package.seeall)
local _map_data -- 地图数据
local _open_list -- 开放节点
local _open_map -- 开放节点,为了提高性能而加
local _close_map -- 关闭节点
local _deleget -- 代理
local _dest_point -- 目标点
local _start_point -- 起点
local _path -- 路径
-- 寻找路径
--[[
deleget = {
g = function(point1, point2)
-- add your code
-- 返回点point1到点point2的实际代价
end
h = function(point1, point2)
-- add your code
-- 返回点point1到点point2的估算代价
end
getValue = function(j, i)
-- 返回地图中第i行,第j列的数据 1为障碍物,0为非障碍物
end
width -- 地图宽度
height -- 地图高度
}
--]]
function findPath(deleget, start_point, dest_point)
_deleget = deleget
_dest_point = dest_point
_start_point = start_point
init()
while not table.isEmpty(_open_list) do
local cur_point = _open_list[1]
table.remove(_open_list, 1)
_open_map[cur_point.key] = nil
if isEqual(cur_point, dest_point) then
return makePath(cur_point)
else
_close_map[cur_point.key] = cur_point
local next_points = getNextPoints(cur_point)
for i = 1, #next_points do
local next_point = next_points[i]
if _open_map[next_point.key] == nil and _close_map[next_point.key] == nil and isObstacle(next_point) == false then
_open_map[next_point.key] = next_point
table.insert(_open_list, next_point)
end
end
table.sort(_open_list, compareF)
end
end
return nil
end
function init()
_open_list = {}
_open_map = {}
_close_map = {}
_path = {}
_map_data = {}
for i = 1, _deleget.height do
_map_data[i] = {}
for j = 1, _deleget.width do
local value = _deleget.getValue(j, i)
_map_data[i][j] = value
end
end
_open_map[getKey(_start_point)] = _start_point
table.insert(_open_list, _start_point)
end
function createPoint(x, y)
local point = {
["x"] = x,
["y"] = y,
["last"] = nil,
["g_value"] = 0,
["h_value"] = 0,
["f_value"] = 0
}
point["key"] = getKey(point)
return point
end
-- 得到下一个可以移动的点
-- @param point 当前所在点
function getNextPoints(point)
local next_points = {}
for i = 1, #_deleget.directions do
local offset = _deleget.directions[i]
local next_point = createPoint(point.x + offset[1], point.y + offset[2])
next_point["last"] = point
if next_point.x >= 1 and next_point.x <= _deleget.width and next_point.y >= 1 and next_point.y <= _deleget.height then
next_point["g_value"] = _deleget.g(point, next_point)
next_point["h_value"] = _deleget.h(point, _dest_point)--math.abs(next_points.x - _dest_point.x) + math.abs(next_points.y - _dest_point.y)
next_point["f_value"] = next_point.g_value + next_point.h_value
table.insert(next_points, next_point)
end
end
return next_points
end
-- 得到路径
-- @param end_point 目标点
function makePath(end_point)
_path = {}
local point = end_point
while point.last ~= nil do
table.insert(_path, createPoint(point.x, point.y))
point = point.last
end
local start_point = point
table.insert(_path, start_point)
return _path
end
-- 两个点的代价比较器
function compareF(point1, point2)
return point1.f_value < point2.f_value
end
-- 是否是障碍物
function isObstacle(point)
local value = _map_data[point.y][point.x]
if value == 1 then
return true
end
return false
end
-- 两个点是否是同一个点
function isEqual(point1, point2)
return point1.key == point2.key
end
-- 根据点得到点的key
function getKey(point)
local key = string.format("%d,%d", point.x, point.y)
return key
end
下面是工具类PathUtil的用法
local deleget = {}
deleget.g = function(point1, point2)
return math.abs(point1.x - point2.x) + math.abs(point1.y - point2.y)
end
deleget.h = deleget.g
deleget.getValue = function(j, i)
local index = FindTreasureUtil.getIndex(j, i)
local map_info = _map_info.map[index]
if map_info.display == 0 and map_info.eid ~= 1 then
return 0
end
return 1
end
deleget.directions = {{-1, 0}, {0, -1}, {0, 1}, {1, 0}} -- 左,上,下,右
deleget.width = _cols
deleget.height = _rows
local dest_row, dest_col = FindTreasureUtil.getMapPosition(tag)
local dest_point = PathUtil.createPoint(dest_col, dest_row)
local start_row, start_col = FindTreasureUtil.getMapPosition(_player_index)
local start_point = PathUtil.createPoint(start_col, start_row)
_path = PathUtil.findPath(deleget, start_point, dest_point)
_path就是我们找到的路径,起点为最后一个元素,终点为第一个元素