当前位置:首页 » 操作系统 » 粒子群算法离散

粒子群算法离散

发布时间: 2023-06-18 20:04:43

A. 分析标准粒子群算法的不足及改进的方法

一个以上的目标,以优化
相对传统的多目标优化方法在解决多目标问题,PSO具有很大的优势。首先,PSO算法和高效的搜索功能,有利于在这个意义上,多目标的最优解;其次,PSO代表了整个解决方案的人口集固有的并行性,同时搜索多个非劣解,所以容易搜索多个Pareto最佳的解决方案;此外,PSO通用的适合处理所有类型的目标函数和约束条件,PSO容易与传统相结合的方法,和然后提出了有效的方法来解决一个具体的问题。 PSO本身,为了更好地解决多目标优化问题,必须解决的问题的全局最优粒子和个人选择的最优粒子。为全局最优粒子的选择,一方面,该算法具有更好的收敛速度,另一方面帕累托边界分散体的溶液中。如果在最佳的单个颗粒的选择,需要较少的计算复杂性,并且是仅由较少数量的比较非
劣解更新。迄今为止,基于PSO的多目标优化,主要有以下
思路:
(1)向量法和加权方法。文献[20]的固定权重法,自适应权重法和向量评估方法的第一次,PSO解决MO问题。然而,对于一个给定的优化问题,权重的方法通常是很难获得一组合适的权重向量评价方法MO的问题是,往往无法得到满意的解决方案。
(2)基于Pareto方法。 [21]帕累托排序机制和PSO相结合,处理的问题,多目标优化,Pareto排序方法来选择一组的精英,和轮盘赌选择全局最优粒子。虽然轮盘赌选择机制,使所有的帕累托个人选择的概率是一样的,但实际上只有少数人的选择的概率就越大,因此不利于保持种群多样性;文献[22]通过引入在PSO帕累托竞争机制,选择全局最优粒子的颗粒知识基础。候选个人随机选自人口比较集进行比较,以确定非劣解,该算法的成功取决于比较集的大小的参数设置。如果这个参数是太小了,选择的过程,从人口的非劣效性个人可能是太小了,如果这个参数是太大,它可能会出现过早收敛。
(3)距离的方法。 [23],被分配的各个的当前的解决方案之间的距离的基础上Pa2reto的解决方案,其适应值,以便选择全局最优粒子。随着距离的方法需要被初始化潜在的解决方案,如果初始电位值太大,不同的解决方案,以适应不同的值并不显着。这将导致在选择压力太小或个别均匀分布,导致在PSO算法收敛速度非常慢。
(4)附近的“。文献[24]提出了动态邻域的选择策略,为优化目标的定义,目标,和其他所有的目标定义的目标附近,然后选择全局最优粒子的动态邻域的策略,但该方法更敏感的目标函数的优化目标选择和附近的排序。
(5)多组法。文献[25]的人口划分成多个子群,以及每个子群PSO算法,通过搜索Pareto最优解的各种子群之间的信息交流。然而,由于需要增加的粒子的数量增加的计算量。
(6)非排名的方法。 [26]使用非主导的排序选择全局最优的粒子。整个人口,粒子的个人最好成绩粒子和它的后代,有利于提供一个适当的选择压力,小生境技术,以增加种群多样性。比较所有粒子的个人最好成绩颗粒在整个人群遗传给后代,但是,由于其本身的性质是不利于人口的多样性,容易形成早熟。此外,文献[27]最大最小策略,博弈论引入PSO解决多MO。最大最小策略,以确定粒子的适应值,可以判断帕累托最优的解决方案,而不需要集群和小生境技术。
2约束优化
在最近几年也取得了一些进展,PSO算法在约束最优化。基于PSO-的约束优化工作分为两种类型:①罚函数法;②设计特定的进化操作或约束修正系数。 [28]采用罚函数法,采用非固定多段映射罚函数将约束的优化问题,然后利用PSO解决问题的转换后,模拟结果表明,该算法相对进化策略和遗传算法的优势,但罚函数的设计过于复杂,不利于解决;文献[29],一个可行的解决方案,保留策略处理约束,即,一方面要更新所有的颗粒的存储区域中到只保留可行的解决方案,在另一方面在初始化阶段的所有的颗粒从一个可行的解决方案的空间值?初始的可行的解决方案空间,然而,是难以确定的很多问题,文献[30 ]提出的多层信息共享策略粒子群与约束原则来处理,根据约束矩阵多层Pareto排序机制的微粒,从而一些微粒,以确定个人的搜索方向的其余。
3离散优化为离散优化解决方案空间是离散点的集合,而不是连续PSO解决离散优化问题,必须予以纠??正的速度和位置更新公式,或变形。基于PSO的离散优化可分为以下三类:
速度(1)的位置变化的概率。 [31]首先提出了离散二进制PSO。二进制粒子的位置编码器,Sigmoid函数,速度约束在[0,1],代表粒子的概率立场;法[32] [31]在文献
提高的地址更换安排。安排更换颗粒,速度是指根据两个粒子的相似性,以确定粒子的位置变化也引入突变操作,以防止陷入局部极小的最优粒子的概率。
(2)重新定义的PSO的操作。 [33]通过重新定义粒子的位置,速度,和他们的加法和减法乘法运算,提出了一种新的离散粒子群,并为解决旅行商问题。虽然该算法是有效的,但它提供了一种新的思维方式求解组合优化问题。
(3)连续PSO离散的情况下。 [34]采用连续PSO,解决分布式计算机任务的分配问题。于实数被转换为一个正整数,和符号的实数部分和小数部分的
分除去。结果表明,在溶液中的质量和速度的方法的算法是优于遗传算法。
4动态优化
在许多实际工程问题,优化环境是不确定的,或动态。因此,优化算法必须有能力与环境的动态变化做出相应的调整,以最佳的解决方案,该算法具有一定的鲁棒性。 [35]首次提出了PSO跟踪动态系统[36]提出了自适应PSO自动跟踪动态系统的变化,种群粒子检测方法和粒子重新初始化PSO系统变化的跟踪能力增强;文献[37]迅速变化的动态环境中,在粒子速度更新公式的变化条目的增加,消除了需要在环境中的变化来检测,可以跟踪环境处理。虽然该研究少得多,但不容质疑的,是一个重要的研究内容。

粒子群算法的MATLAB程序

初始化粒子群;

对于每个粒子
计算他们的身体健康;
如果(健身优于粒子的历史最好值)
历史最好的个人裨锡更新;

如果选择当前粒子群粒子;(当前的最优粒子比历史最好粒子组)
与目前最好的粒子更新PG组;对于每个粒子

更新粒子类型①速度;
更新的位置粒子类型②;

虽然还没有达到最大迭代次数,或不符合的最小误差。

B. 粒子群算法主要用于处理离散问题,离散指什么

比如说港口海岸线,离散的是指:把海岸线人为地划分为1,2,3号泊位,来泊分散地安排在每个泊位;反之,则是连续的。

C. 粒子群算法和离散粒子群算法有什么不同主要差别体现在哪里

一般就是在跟新粒子位置后,对粒子进行离散点处理。
比如:
你的粒子的离散点是0到9的整数。
那么对每个粒子更新位置后,比如是在(0,1)范围内的随机数。那么就(0,0.1)范围令其值为0;(0.1,0.2)范围令其值为1;............(0.9.1)范围令其值为9。
当然初始位置值也需要这样处理。

D. 粒子群算法原理

粒子群算悉银法原理如下:

粒子群优化(Particle Swarm Optimization,PSO)算法是1995年由美国学者Kennedy等人提出的,该算法是模拟鸟类觅食等群体智能行为的智能优化算法。在自然界中,鸟群在觅食的时候,一般存在个体和群体协同的行为。

每个粒子都旦薯会向两个值学习,一个值是个体的历史最优值 ;另一个值是群体的历史最优值(全局最优值) 。粒子会根据这两个值来调整自身的速度和位置,而每个位置的优劣都是根据适应度值来确定的。适应度函数是优化的目标函数。

E. 粒子群算法的优缺点

优点:PSO同遗传算法类似,是一种基于迭代的优化算法。系统初始化为一组随机解,通过迭代搜寻最优值。同遗传算法比较,PSO的优势在于简单容易实现,并且没有许多参数需要调整。

缺点:在某些问题上性能并不是特别好。网络权重的编码而且遗传算子的选择有时比较麻烦。最近已经有一些利用PSO来代替反向传播算法来训练神经网络的论文。

(5)粒子群算法离散扩展阅读:

注意事项:

基础粒子群算法步骤较为简单。粒子群优化算法是由一组粒子在搜索空间中运动,受其自身的最佳过去位置pbest和整个群或近邻的最佳过去位置gbest的影响。

对于有些改进算法,在速度更新公式最后一项会加入一个随机项,来平衡收敛速度与避免早熟。并且根据位置更新公式的特点,粒子群算法更适合求解连续优化问题。

F. 粒子群算法

粒子群算法(Particle Swarm Optimization),又称鸟群觅食算法,是由数学家J. Kennedy和R. C. Eberhart等开发出的一种新的进化算法。它是从随机解开始触发,通过迭代寻找出其中的最优解。本算法主要是通过适应度来评价解的分数,比传统的遗传算法更加的简单,它没有传统遗传算法中的“交叉”和“变异”等操作,它主要是追随当前搜索到的最优值来寻找到全局最优值。这种算法实现容易,精度高,收敛快等特点被广泛运用在各个问题中。

粒子群算法是模拟鸟群觅食的所建立起来的一种智能算法,一开始所有的鸟都不知道食物在哪里,它们通过找到离食物最近的鸟的周围,再去寻找食物,这样不断的追踪,大量的鸟都堆积在食物附近这样找到食物的几率就大大增加了。粒子群就是这样一种模拟鸟群觅食的过程,粒子群把鸟看成一个个粒子,它们拥有两个属性——位置和速度,然后根据自己的这两个属性共享到整个集群中,其他粒子改变飞行方向去找到最近的区域,然后整个集群都聚集在最优解附近,最后最终找到最优解。

算法中我们需要的数据结构,我们需要一个值来存储每个粒子搜索到的最优解,用一个值来存储整个群体在一次迭代中搜索到的最优解,这样我们的粒子速度和位置的更新公式如下:

其中pbest是每个粒子搜索到的最优解,gbest是整个群体在一次迭代中搜索到的最优解,v[i]是代表第i个粒子的速度,w代表惯性系数是一个超参数,rang()表示的是在0到1的随机数。Present[i]代表第i个粒子当前的位置。我们通过上面的公式不停的迭代粒子群的状态,最终得到全局最优解

G. 什么是粒子群算法

粒子群算法介绍(摘自http://blog.sina.com.cn/newtech)
优化问题是工业设计中经常遇到的问题,许多问题最后都可以归结为优化问题. 为了解决各种各样的优化问题,人们提出了许多优化算法,比较着名的有爬山法、遗传算法等.优化问题有两个主要问题:一是要求寻找全局最小点,二是要求有较高的收敛速度. 爬山法精度较高,但是易于陷入局部极小. 遗传算法属于进化算法( Evolutionary Algorithms) 的一种,它通过模仿自然界的选择与遗传的机理来寻找最优解. 遗传算法有三个基本算子:选择、交叉和变异. 但是遗传算法的编程实现比较复杂,首先需要对问题进行编码,找到最优解之后还需要对问题进行解码,另外三个算子的实现也有许多参数,如交叉率和变异率,并且这些参数的选择严重影响解的品质,而目前这些参数的选择大部分是依靠经验.1995 年Eberhart 博士和kennedy 博士提出了一种新的算法;粒子群优化(Partical Swarm Optimization -PSO) 算法 . 这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性.

粒子群优化(Partical Swarm Optimization - PSO) 算法是近年来发展起来的一种新的进化算法( Evolu2tionary Algorithm - EA) .PSO 算法属于进化算法的一种,和遗传算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质. 但是它比遗传算法规则更为简单,它没有遗传算法的“交叉”(Crossover) 和“变异”(Mutation) 操作. 它通过追随当前搜索到的最优值来寻找全局最优 .

粒子群算法

1. 引言

粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),有Eberhart博士和kennedy博士发明。源于对鸟群捕食的行为研究

PSO同遗传算法类似,是一种基于叠代的优化工具。系统初始化为一组随机解,通过叠代搜寻最优值。但是并没有遗传算法用的交叉(crossover)以及变异(mutation)。而是粒子在解空间追随最优的粒子进行搜索。详细的步骤以后的章节介绍

同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域

2. 背景: 人工生命

"人工生命"是来研究具有某些生命基本特征的人工系统. 人工生命包括两方面的内容

1. 研究如何利用计算技术研究生物现象
2. 研究如何利用生物技术研究计算问题

我们现在关注的是第二部分的内容. 现在已经有很多源于生物现象的计算技巧. 例如, 人工神经网络是简化的大脑模型. 遗传算法是模拟基因进化过程的.

现在我们讨论另一种生物系统- 社会系统. 更确切的是, 在由简单个体组成的群落与环境以及个体之间的互动行为. 也可称做"群智能"(swarm intelligence). 这些模拟系统利用局部信息从而可能产生不可预测的群体行为

例如floys 和 boids, 他们都用来模拟鱼群和鸟群的运动规律, 主要用于计算机视觉和计算机辅助设计.

在计算智能(computational intelligence)领域有两种基于群智能的算法. 蚁群算法(ant colony optimization)和粒子群算法(particle swarm optimization). 前者是对蚂蚁群落食物采集过程的模拟. 已经成功运用在很多离散优化问题上.

粒子群优化算法(PSO) 也是起源对简单社会系统的模拟. 最初设想是模拟鸟群觅食的过程. 但后来发现PSO是一种很好的优化工具.

3. 算法介绍

如前所述,PSO模拟鸟群的捕食行为。设想这样一个场景:一群鸟在随机搜索食物。在这个区域里只有一块食物。所有的鸟都不知道食物在那里。但是他们知道当前的位置离食物还有多远。那么找到食物的最优策略是什么呢。最简单有效的就是搜寻目前离食物最近的鸟的周围区域。

PSO从这种模型中得到启示并用于解决优化问题。PSO中,每个优化问题的解都是搜索空间中的一只鸟。我们称之为“粒子”。所有的例子都有一个由被优化的函数决定的适应值(fitness value),每个粒子还有一个速度决定他们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索

PSO 初始化为一群随机粒子(随机解)。然后通过叠代找到最优解。在每一次叠代中,粒子通过跟踪两个"极值"来更新自己。第一个就是粒子本身所找到的最优解。这个解叫做个体极值pBest. 另一个极值是整个种群目前找到的最优解。这个极值是全局极值gBest。另外也可以不用整个种群而只是用其中一部分最为粒子的邻居,那么在所有邻居中的极值就是局部极值。

在找到这两个最优值时, 粒子根据如下的公式来更新自己的速度和新的位置

v[] = v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[]) (a)
present[] = persent[] + v[] (b)

v[] 是粒子的速度, persent[] 是当前粒子的位置. pbest[] and gbest[] 如前定义 rand () 是介于(0, 1)之间的随机数. c1, c2 是学习因子. 通常 c1 = c2 = 2.

程序的伪代码如下

For each particle
____Initialize particle
END

Do
____For each particle
________Calculate fitness value
________If the fitness value is better than the best fitness value (pBest) in history
____________set current value as the new pBest
____End

____Choose the particle with the best fitness value of all the particles as the gBest
____For each particle
________Calculate particle velocity according equation (a)
________Update particle position according equation (b)
____End
While maximum iterations or minimum error criteria is not attained

在每一维粒子的速度都会被限制在一个最大速度Vmax,如果某一维更新后的速度超过用户设定的Vmax,那么这一维的速度就被限定为Vmax

4. 遗传算法和 PSO 的比较

大多数演化计算技术都是用同样的过程
1. 种群随机初始化
2. 对种群内的每一个个体计算适应值(fitness value).适应值与最优解的距离直接有关
3. 种群根据适应值进行复制
4. 如果终止条件满足的话,就停止,否则转步骤2

从以上步骤,我们可以看到PSO和GA有很多共同之处。两者都随机初始化种群,而且都使用适应值来评价系统,而且都根据适应值来进行一定的随机搜索。两个系统都不是保证一定找到最优解

但是,PSO 没有遗传操作如交叉(crossover)和变异(mutation). 而是根据自己的速度来决定搜索。粒子还有一个重要的特点,就是有记忆。

与遗传算法比较, PSO 的信息共享机制是很不同的. 在遗传算法中,染色体(chromosomes) 互相共享信息,所以整个种群的移动是比较均匀的向最优区域移动. 在PSO中, 只有gBest (or lBest) 给出信息给其他的粒子,这是单向的信息流动. 整个搜索更新过程是跟随当前最优解的过程. 与遗传算法比较, 在大多数的情况下,所有的粒子可能更快的收敛于最优解

5. 人工神经网络 和 PSO

人工神经网络(ANN)是模拟大脑分析过程的简单数学模型,反向转播算法是最流行的神经网络训练算法。进来也有很多研究开始利用演化计算(evolutionary computation)技术来研究人工神经网络的各个方面。

演化计算可以用来研究神经网络的三个方面:网络连接权重,网络结构(网络拓扑结构,传递函数),网络学习算法。

不过大多数这方面的工作都集中在网络连接权重,和网络拓扑结构上。在GA中,网络权重和/或拓扑结构一般编码为染色体(Chromosome),适应函数(fitness function)的选择一般根据研究目的确定。例如在分类问题中,错误分类的比率可以用来作为适应值

演化计算的优势在于可以处理一些传统方法不能处理的例子例如不可导的节点传递函数或者没有梯度信息存在。但是缺点在于:在某些问题上性能并不是特别好。2. 网络权重的编码而且遗传算子的选择有时比较麻烦

最近已经有一些利用PSO来代替反向传播算法来训练神经网络的论文。研究表明PSO 是一种很有潜力的神经网络算法。PSO速度比较快而且可以得到比较好的结果。而且还没有遗传算法碰到的问题

这里用一个简单的例子说明PSO训练神经网络的过程。这个例子使用分类问题的基准函数(Benchmark function)IRIS数据集。(Iris 是一种鸢尾属植物) 在数据记录中,每组数据包含Iris花的四种属性:萼片长度,萼片宽度,花瓣长度,和花瓣宽度,三种不同的花各有50组数据. 这样总共有150组数据或模式。

我们用3层的神经网络来做分类。现在有四个输入和三个输出。所以神经网络的输入层有4个节点,输出层有3个节点我们也可以动态调节隐含层节点的数目,不过这里我们假定隐含层有6个节点。我们也可以训练神经网络中其他的参数。不过这里我们只是来确定网络权重。粒子就表示神经网络的一组权重,应该是4*6+6*3=42个参数。权重的范围设定为[-100,100] (这只是一个例子,在实际情况中可能需要试验调整).在完成编码以后,我们需要确定适应函数。对于分类问题,我们把所有的数据送入神经网络,网络的权重有粒子的参数决定。然后记录所有的错误分类的数目作为那个粒子的适应值。现在我们就利用PSO来训练神经网络来获得尽可能低的错误分类数目。PSO本身并没有很多的参数需要调整。所以在实验中只需要调整隐含层的节点数目和权重的范围以取得较好的分类效果。

6. PSO的参数设置

从上面的例子我们可以看到应用PSO解决优化问题的过程中有两个重要的步骤: 问题解的编码和适应度函数
PSO的一个优势就是采用实数编码, 不需要像遗传算法一样是二进制编码(或者采用针对实数的遗传操作.例如对于问题 f(x) = x1^2 + x2^2+x3^2 求解, 粒子可以直接编码为 (x1, x2, x3), 而适应度函数就是f(x). 接着我们就可以利用前面的过程去寻优.这个寻优过程是一个叠代过程, 中止条件一般为设置为达到最大循环数或者最小错误

PSO中并没有许多需要调节的参数,下面列出了这些参数以及经验设置

粒子数: 一般取 20 – 40. 其实对于大部分的问题10个粒子已经足够可以取得好的结果, 不过对于比较难的问题或者特定类别的问题, 粒子数可以取到100 或 200

粒子的长度: 这是由优化问题决定, 就是问题解的长度

粒子的范围: 由优化问题决定,每一维可是设定不同的范围

Vmax: 最大速度,决定粒子在一个循环中最大的移动距离,通常设定为粒子的范围宽度,例如上面的例子里,粒子 (x1, x2, x3) x1 属于 [-10, 10], 那么 Vmax 的大小就是 20

学习因子: c1 和 c2 通常等于 2. 不过在文献中也有其他的取值. 但是一般 c1 等于 c2 并且范围在0和4之间

中止条件: 最大循环数以及最小错误要求. 例如, 在上面的神经网络训练例子中, 最小错误可以设定为1个错误分类, 最大循环设定为2000, 这个中止条件由具体的问题确定.

全局PSO和局部PSO: 我们介绍了两种版本的粒子群优化算法: 全局版和局部版. 前者速度快不过有时会陷入局部最优. 后者收敛速度慢一点不过很难陷入局部最优. 在实际应用中, 可以先用全局PSO找到大致的结果,再有局部PSO进行搜索.

另外的一个参数是惯性权重, 由Shi 和Eberhart提出, 有兴趣的可以参考他们1998年的论文(题目: A modified particle swarm optimizer)

H. 离散粒子群优化算法的背景和意义是什么

定义粒子群优化算法(Particle Swarm optimization,PSO)又翻译为粒子群算法、微粒群算法、或微粒群优化算法。是通过模拟鸟群觅食行为而发展起来的一种基于群体协作的随机搜索算法。通常认为它是群集智能 (Swarm intelligence, SI) 的一种。它可以被纳入多主体优化系统 (Multiagent Optimization System, MAOS). 粒子群优化算法是由Eberhart博士和kennedy博士发明。PSO模拟鸟群的捕食行为PSO模拟鸟群的捕食行为。一群鸟在随机搜索食物,在这个区域里只有一块食物。所有的鸟都不知道食物在那里。但是他们知道当前的位置离食物还有多远。那么找到食物的最优策略是什么呢。最简单有效的就是搜寻目前离食物最近的鸟的周围区域。从模型中得到的启示PSO从这种模型中得到启示并用于解决优化问题。PSO中,每个优化问题的解都是搜索空间中的一只鸟。我们称之为“粒子”。所有的粒子都有一个由被优化的函数决定的适应值(fitnessvalue),每个粒子还有一个速度决定他们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索。PSO初始化PSO初始化为一群随机粒子(随机解),然后通过叠代找到最优解,在每一次叠代中,粒子通过跟踪两个“极值”来更新自己。第一个就是粒子本身所找到的最优解,这个解叫做个体极值pBest,另一个极值是整个种群目前找到的最优解,这个极值是全局极值gBest。另外也可以不用整个种群而只是用其中一部分最优粒子的邻居,那么在所有邻居中的极值就是局部极值。编辑本段算法介绍在找到这两个最优值时, 粒子根据如下的公式来更新自己的速度和新的位置v[] = v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[]) (a)present[] = persent[] + v[] (b)v[] 是粒子的速度, persent[] 是当前粒子的位置. pbest[] and gbest[] 如前定义 rand () 是介于(0, 1)之间的随机数. c1, c2 是学习因子. 通常 c1 = c2 = 2.程序的伪代码如下For each particle____Initialize particleENDDo____For each particle________Calculate fitness value________If the fitness value is better than the best fitness value (pBest) in history____________set current value as the new pBest____End____Choose the particle with the best fitness value of all the particles as the gBest____For each particle________Calculate particle velocity according equation (a)________Update particle position according equation (b)____EndWhile maximum iterations or minimum error criteria is not attained在每一维粒子的速度都会被限制在一个最大速度Vmax,如果某一维更新后的速度超过用户设定的Vmax,那么这一维的速度就被限定为Vmax。编辑本段遗传算法和PSO的比较共同点①种群随机初始化。②对种群内的每一个个体计算适应值(fitness value)。适应值与最优解的距离直接有关。③种群根据适应值进行复制 。④如果终止条件满足的话,就停止,否则转步骤② 。从以上步骤,我们可以看到PSO和遗传算法有很多共同之处。两者都随机初始化种群,而且都使用适应值来评价系统,而且都根据适应值来进行一定的随机搜索。两个系统都不是保证一定找到最优解。但是,PSO没有遗传操作如交叉(crossover)和变异(mutation),而是根据自己的速度来决定搜索。粒子还有一个重要的特点,就是有记忆。不同点与遗传算法比较,PSO的信息共享机制是很不同的。在遗传算法中,染色体(chromosomes)互相共享信息,所以整个种群的移动是比较均匀的向最优区域移动。在PSO中, 只有gBest (orlBest) 给出信息给其他的粒子, 这是单向的信息流动。整个搜索更新过程是跟随当前最优解的过程。与遗传算法比较, 在大多数的情况下,所有的粒子可能更快的收敛于最优解。编辑本段人工神经网络和PSO定义人工神经网络(ANN)是模拟大脑分析过程的简单数学模型,反向转播算法是最流行的神经网络训练算法。进来也有很多研究开始利用演化计算(evolutionary computation)技术来研究人工神经网络的各个方面。研究方面演化计算可以用来研究神经网络的三个方面:网络连接权重,网络结构(网络拓扑结构,传递函数),网络学习算法。不过大多数这方面的工作都集中在网络连接权重,和网络拓扑结构上。在GA中,网络权重和/或拓扑结构一般编码为染色体(Chromosome),适应函数(fitness function)的选择一般根据研究目的确定。例如在分类问题中,错误分类的比率可以用来作为适应值优缺点演化计算的优势在于可以处理一些传统方法不能处理的例子例如不可导的节点传递函数或者没有梯度信息存在。但是缺点在于:1、在某些问题上性能并不是特别好。2. 网络权重的编码而且遗传算子的选择有时比较麻烦。最近已经有一些利用PSO来代替反向传播算法来训练神经网络的论文。研究表明PSO 是一种很有潜力的神经网络算法。PSO速度比较快而且可以得到比较好的结果。而且还没有遗传算法碰到的问题。举例这里用一个简单的例子说明PSO训练神经网络的过程。这个例子使用分类问题的基准函数 (Benchmark function)IRIS数据集。(Iris 是一种鸢尾属植物) 在数据记录中,每组数据包含Iris花的四种属性:萼片长度,萼片宽度,花瓣长度,和花瓣宽度,三种不同的花各有50组数据. 这样总共有150组数据或模式。我们用3层的神经网络来做分类。现在有四个输入和三个输出。所以神经网络的输入层有4个节点,输出层有3个节点我们也可以动态调节隐含层节点的数目,不过这里我们假定隐含层有6个节点。我们也可以训练神经网络中其他的参数。不过这里我们只是来确定网络权重。粒子就表示神经网络的一组权重,应该是4*6+6*3=42个参数。权重的范围设定为[-100,100] (这只是一个例子,在实际情况中可能需要试验调整).在完成编码以后,我们需要确定适应函数。对于分类问题,我们把所有的数据送入神经网络,网络的权重有粒子的参数决定。然后记录所有的错误分类的数目作为那个粒子的适应值。现在我们就利用PSO来训练神经网络来获得尽可能低的错误分类数目。PSO本身并没有很多的参数需要调整。所以在实验中只需要调整隐含层的节点数目和权重的范围以取得较好的分类效果。

I. 遗传算法、粒子群算法、蚁群算法,各自优缺点和如何混合请详细点 谢谢

遗传算法适合求解离散问题,具备数学理论支持,但是存在着汉明悬崖等问题。
粒子群算法适合求解实数问题,算法简单,计算方便,求解速度快,但是存在着陷入局部最优等问题。
蚁群算法适合在图上搜索路径问题,计算开销会大。
要将三种算法进行混合,就要针对特定问题,然后融合其中的优势,比如将遗传算法中的变异算子加入粒子群中就可以形成基于变异的粒子群算法。

热点内容
ubuntu下载ftp文件 发布:2025-03-24 01:43:20 浏览:706
我的世界如何建造一个pvp服务器 发布:2025-03-24 01:38:34 浏览:244
pythonshutil覆盖 发布:2025-03-24 01:33:29 浏览:623
帕灯编程 发布:2025-03-24 01:27:20 浏览:239
如何定义服务器字体 发布:2025-03-24 01:26:28 浏览:264
php表格打 发布:2025-03-24 01:18:20 浏览:777
linux如何搭建nis服务器 发布:2025-03-24 01:17:30 浏览:147
银行卡登陆密码是什么 发布:2025-03-24 01:15:57 浏览:957
qq空间怎么设密码手机 发布:2025-03-24 01:13:09 浏览:578
团购php 发布:2025-03-24 01:11:29 浏览:543