人工智能a算法
Ⅰ 人工智能算法有哪些
人工智能算法有:决策树、随机森林算法、逻辑回归、SVM、朴素贝叶斯、K最近邻算法、K均值算法、Adaboost算法、神经网络、马尔可夫。
Ⅱ 人工智能要考试了 还有好多不会 请教有哪五种常用的启发式算法A算法和A*算法是吗
都算的。
其它的常见算法还有:
模拟退火算法(Simulated Annealing Algorithm);
蚁群算法(Ant Algorithm);
禁忌搜索算法(Tabu Search Algorithm);
神经网络算法(Neural Network Algorithm);
遗传算法(Genetic Algorithm)
希望对你有帮助^^
Ⅲ 什么是AI算法
ai
人工智能
用程序实现搜寻答案的计算方法
比如说一棵二叉树上的某一点的数据是你要的
你就要写一个程序让它找到这个数据
而这个程序怎么找
就要看算法了~
常见的算法大概有什么a*算法之类的
Ⅳ 人工智能 A*算法原理
A 算法是启发式算法重要的一种,主要是用于在两点之间选择一个最优路径,而A 的实现也是通过一个估值函数
上图中这个熊到树叶的 曼哈顿距离 就是蓝色线所表示的距离,这其中不考虑障碍物,假如上图每一个方格长度为1,那么此时的熊的曼哈顿距离就为9.
起点(X1,Y1),终点(X2,Y2),H=|X2-X1|+|Y2-Y1|
我们也可以通过几何坐标点来算出曼哈顿距离,还是以上图为例,左下角为(0,0)点,熊的位置为(1,4),树叶的位置为(7,1),那么H=|7-1|+|1-4|=9。
还是以上图为例,比如刚开始熊位置我们会加入到CLOSE列表中,而熊四周它可以移动到的点位我们会加入到OPEN列表中,并对熊四周的8个节点进行F=G+H这样的估值运算,然后在这8个节点中选中一个F值为最小的节点,然后把再把这个节点从OPEN列表中删除,加入到Close列表中,从接着在对这个节点的四周8个节点进行一个估值运算,再接着依次运算,这样说大家可能不是太理解,我会在下边做详细解释。
从起点到终点,我们通过A星算法来找出最优路径
我们把每一个方格的长度定义为1,那从起始点到5位置的代价就是1,到3的代价为1.41,定义好了我们接着看上图,接着运算
第一步我们会把起始点四周的点加入OPEN列表中然后进行一个估值运算,运算结果如上图,这其中大家看到一个小箭头都指向了起点,这个箭头就是指向父节点,而open列表的G值都是根据这个进行计算的,意思就是我从上一个父节点运行到此处时所需要的总代价,如果指向不一样可能G值就不一样,上图中我们经过计算发现1点F值是7.41是最小的,那我们就选中这个点,并把1点从OPEN列表中删除,加入到CLOSE列表中,但是我们在往下运算的时候发现1点的四周,2点,3点和起始点这三个要怎么处理,首先起始点已经加入到了CLOSE,他就不需要再进行这种运算,这就是CLOSE列表的作用,而2点和3点我们也可以对他进行运算,2点的运算,我们从1移动到2点的时候,他需要的代价也就是G值会变成2.41,而H值是不会变的F=2.41+7=9.41,这个值我们发现大于原来的的F值,那我们就不能对他进行改变(把父节点指向1,把F值改为9.41,因为我们一直追求的是F值最小化),3点也同理。
在对1点四周进行运算后整个OPEN列表中有两个点2点和3点的F值都是7.41,此时我们系统就可能随机选择一个点然后进行下一步运算,现在我们选中的是3点,然后对3点的四周进行运算,结果是四周的OPEN点位如果把父节点指向3点值时F值都比原来的大,所以不发生改变。我们在看整个OPEN列表中,也就2点的7.41值是最小的,那我们就选中2点接着运算。
我们在上一部运算中选中的是1点,上图没有把2点加入OPEN列表,因为有障碍物的阻挡从1点他移动不到2点,所以没有把2点加入到OPEN列表中,整个OPEN列表中3的F=8是最小的,我们就选中3,我们对3点四周进行运算是我们发现4点经过计算G=1+1=2,F=2+6=8所以此时4点要进行改变,F变为8并把箭头指向3点(就是把4点的父节点变为3),如下图
我们就按照这种方法一直进行运算,最后 的运算结果如下图
而我们通过目标点位根据箭头(父节点),一步一步向前寻找最后我们发现了一条指向起点的路径,这个就是我们所需要的最优路径。 如下图的白色选中区域
但是我们还要注意几点
最优路径有2个
这是我对A*算法的一些理解,有些地方可能有BUG,欢迎大家指出,共同学习。
Ⅳ al算法是什么意思
是指人工智能算法。
Al是Artificial Intelligence,中文是人工智能。
人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。
人工智能的发展:
当计算机出现后,人类开始真正有了一个可以模拟人类思维的工具,在以后的岁月中,无数科学家为这个目标努力着。
如今人工智能已经不再是几个科学家的专利了,全世界几乎所有大学的计算机系都有人在研究这门学科,学习计算机的大学生也必须学习这样一门课程,在大家不懈的努力下,如今计算机似乎已经变得十分聪明了。
人们或许不会注意到,在一些地方计算机帮助人进行其它原来只属于人类的工作,计算机以它的高速和准确为人类发挥着它的作用。人工智能始终是计算机科学的前沿学科,计算机编程语言和其它计算机软件都因为有了人工智能的进展而得以存在。
Ⅵ 人工智能算法简介
人工智能的三大基石—算法、数据和计算能力,算法作为其中之一,是非常重要的,那么人工智能都会涉及哪些算法呢?不同算法适用于哪些场景呢?
一、按照模型训练方式不同可以分为监督学习(Supervised Learning),无监督学习(Unsupervised Learning)、半监督学习(Semi-supervised Learning)和强化学习(Reinforcement Learning)四大类。
常见的监督学习算法包含以下几类:
(1)人工神经网络(Artificial Neural Network)类:反向传播(Backpropagation)、波尔兹曼机(Boltzmann Machine)、卷积神经网络(Convolutional Neural Network)、Hopfield网络(hopfield Network)、多层感知器(Multilyer Perceptron)、径向基函数网络(Radial Basis Function Network,RBFN)、受限波尔兹曼机(Restricted Boltzmann Machine)、回归神经网络(Recurrent Neural Network,RNN)、自组织映射(Self-organizing Map,SOM)、尖峰神经网络(Spiking Neural Network)等。
(2)贝叶斯类(Bayesin):朴素贝叶斯(Naive Bayes)、高斯贝叶斯(Gaussian Naive Bayes)、多项朴素贝叶斯(Multinomial Naive Bayes)、平均-依赖性评估(Averaged One-Dependence Estimators,AODE)
贝叶斯信念网络(Bayesian Belief Network,BBN)、贝叶斯网络(Bayesian Network,BN)等。
(3)决策树(Decision Tree)类:分类和回归树(Classification and Regression Tree,CART)、迭代Dichotomiser3(Iterative Dichotomiser 3, ID3),C4.5算法(C4.5 Algorithm)、C5.0算法(C5.0 Algorithm)、卡方自动交互检测(Chi-squared Automatic Interaction Detection,CHAID)、决策残端(Decision Stump)、ID3算法(ID3 Algorithm)、随机森林(Random Forest)、SLIQ(Supervised Learning in Quest)等。
(4)线性分类器(Linear Classifier)类:Fisher的线性判别(Fisher’s Linear Discriminant)
线性回归(Linear Regression)、逻辑回归(Logistic Regression)、多项逻辑回归(Multionmial Logistic Regression)、朴素贝叶斯分类器(Naive Bayes Classifier)、感知(Perception)、支持向量机(Support Vector Machine)等。
常见的无监督学习类算法包括:
(1) 人工神经网络(Artificial Neural Network)类:生成对抗网络(Generative Adversarial Networks,GAN),前馈神经网络(Feedforward Neural Network)、逻辑学习机(Logic Learning Machine)、自组织映射(Self-organizing Map)等。
(2) 关联规则学习(Association Rule Learning)类:先验算法(Apriori Algorithm)、Eclat算法(Eclat Algorithm)、FP-Growth算法等。
(3)分层聚类算法(Hierarchical Clustering):单连锁聚类(Single-linkage Clustering),概念聚类(Conceptual Clustering)等。
(4)聚类分析(Cluster analysis):BIRCH算法、DBSCAN算法,期望最大化(Expectation-maximization,EM)、模糊聚类(Fuzzy Clustering)、K-means算法、K均值聚类(K-means Clustering)、K-medians聚类、均值漂移算法(Mean-shift)、OPTICS算法等。
(5)异常检测(Anomaly detection)类:K最邻近(K-nearest Neighbor,KNN)算法,局部异常因子算法(Local Outlier Factor,LOF)等。
常见的半监督学习类算法包含:生成模型(Generative Models)、低密度分离(Low-density Separation)、基于图形的方法(Graph-based Methods)、联合训练(Co-training)等。
常见的强化学习类算法包含:Q学习(Q-learning)、状态-行动-奖励-状态-行动(State-Action-Reward-State-Action,SARSA)、DQN(Deep Q Network)、策略梯度算法(Policy Gradients)、基于模型强化学习(Model Based RL)、时序差分学习(Temporal Different Learning)等。
常见的深度学习类算法包含:深度信念网络(Deep Belief Machines)、深度卷积神经网络(Deep Convolutional Neural Networks)、深度递归神经网络(Deep Recurrent Neural Network)、分层时间记忆(Hierarchical Temporal Memory,HTM)、深度波尔兹曼机(Deep Boltzmann Machine,DBM)、栈式自动编码器(Stacked Autoencoder)、生成对抗网络(Generative Adversarial Networks)等。
二、按照解决任务的不同来分类,粗略可以分为二分类算法(Two-class Classification)、多分类算法(Multi-class Classification)、回归算法(Regression)、聚类算法(Clustering)和异常检测(Anomaly Detection)五种。
1.二分类(Two-class Classification)
(1)二分类支持向量机(Two-class SVM):适用于数据特征较多、线性模型的场景。
(2)二分类平均感知器(Two-class Average Perceptron):适用于训练时间短、线性模型的场景。
(3)二分类逻辑回归(Two-class Logistic Regression):适用于训练时间短、线性模型的场景。
(4)二分类贝叶斯点机(Two-class Bayes Point Machine):适用于训练时间短、线性模型的场景。(5)二分类决策森林(Two-class Decision Forest):适用于训练时间短、精准的场景。
(6)二分类提升决策树(Two-class Boosted Decision Tree):适用于训练时间短、精准度高、内存占用量大的场景
(7)二分类决策丛林(Two-class Decision Jungle):适用于训练时间短、精确度高、内存占用量小的场景。
(8)二分类局部深度支持向量机(Two-class Locally Deep SVM):适用于数据特征较多的场景。
(9)二分类神经网络(Two-class Neural Network):适用于精准度高、训练时间较长的场景。
解决多分类问题通常适用三种解决方案:第一种,从数据集和适用方法入手,利用二分类器解决多分类问题;第二种,直接使用具备多分类能力的多分类器;第三种,将二分类器改进成为多分类器今儿解决多分类问题。
常用的算法:
(1)多分类逻辑回归(Multiclass Logistic Regression):适用训练时间短、线性模型的场景。
(2)多分类神经网络(Multiclass Neural Network):适用于精准度高、训练时间较长的场景。
(3)多分类决策森林(Multiclass Decision Forest):适用于精准度高,训练时间短的场景。
(4)多分类决策丛林(Multiclass Decision Jungle):适用于精准度高,内存占用较小的场景。
(5)“一对多”多分类(One-vs-all Multiclass):取决于二分类器效果。
回归
回归问题通常被用来预测具体的数值而非分类。除了返回的结果不同,其他方法与分类问题类似。我们将定量输出,或者连续变量预测称为回归;将定性输出,或者离散变量预测称为分类。长巾的算法有:
(1)排序回归(Ordinal Regression):适用于对数据进行分类排序的场景。
(2)泊松回归(Poission Regression):适用于预测事件次数的场景。
(3)快速森林分位数回归(Fast Forest Quantile Regression):适用于预测分布的场景。
(4)线性回归(Linear Regression):适用于训练时间短、线性模型的场景。
(5)贝叶斯线性回归(Bayesian Linear Regression):适用于线性模型,训练数据量较少的场景。
(6)神经网络回归(Neural Network Regression):适用于精准度高、训练时间较长的场景。
(7)决策森林回归(Decision Forest Regression):适用于精准度高、训练时间短的场景。
(8)提升决策树回归(Boosted Decision Tree Regression):适用于精确度高、训练时间短、内存占用较大的场景。
聚类
聚类的目标是发现数据的潜在规律和结构。聚类通常被用做描述和衡量不同数据源间的相似性,并把数据源分类到不同的簇中。
(1)层次聚类(Hierarchical Clustering):适用于训练时间短、大数据量的场景。
(2)K-means算法:适用于精准度高、训练时间短的场景。
(3)模糊聚类FCM算法(Fuzzy C-means,FCM):适用于精确度高、训练时间短的场景。
(4)SOM神经网络(Self-organizing Feature Map,SOM):适用于运行时间较长的场景。
异常检测
异常检测是指对数据中存在的不正常或非典型的分体进行检测和标志,有时也称为偏差检测。
异常检测看起来和监督学习问题非常相似,都是分类问题。都是对样本的标签进行预测和判断,但是实际上两者的区别非常大,因为异常检测中的正样本(异常点)非常小。常用的算法有:
(1)一分类支持向量机(One-class SVM):适用于数据特征较多的场景。
(2)基于PCA的异常检测(PCA-based Anomaly Detection):适用于训练时间短的场景。
常见的迁移学习类算法包含:归纳式迁移学习(Inctive Transfer Learning) 、直推式迁移学习(Transctive Transfer Learning)、无监督式迁移学习(Unsupervised Transfer Learning)、传递式迁移学习(Transitive Transfer Learning)等。
算法的适用场景:
需要考虑的因素有:
(1)数据量的大小、数据质量和数据本身的特点
(2)机器学习要解决的具体业务场景中问题的本质是什么?
(3)可以接受的计算时间是什么?
(4)算法精度要求有多高?
————————————————
原文链接: https://blog.csdn.net/nfzhlk/article/details/82725769
Ⅶ 人工智能中的算法有什么
模糊数学、神经网络、小波变换、遗传算法、人工免疫系统、参数优化、粒子群算法,等等,简单应用,有高等数学知识即可。
Ⅷ 人工智能技术A*算法解决八数码问题的实验
八数码 估价函数可以选h(s)=ΣΣ[|i-⌊s[i,j]-1)/3⌋| + |j-(s[i,j]-1)mod3|]