当前位置:首页 » 操作系统 » lbp算法

lbp算法

发布时间: 2022-02-05 12:54:45

❶ 怎样计算统一lbp占lbp的比例

不通用 LBP 3200使用硒鼓型号为EP-26, LBP 2900使用硒鼓型号为CRG303(和HP 2612A通用)两种型号的硒鼓单从外观上就可以区别珐偿粹锻诔蹬达拳惮哗出明显的不同,无法通用

❷ 大神~谁有用c++编译的基于lbp算子的图像检索算法的编码程序

基于lbp算子的图像检索算法的编码程序这个问题不是很大,

❸ 佳能LBP3000打印机的使用方法

选择你打印的文件,点击打印,一般默认的就是你这台打印机的驱动,要是不是就选择一下,这样就可以打印了!

求采纳

❹ pca lbp lda哪个算法好

我把训练样本和测试样本的数据用PCA降维后,直接用欧式距离计算训练向量和测试向量的距离,发现准确率一点都不比LDA差。LDA的主要优点是不是在于降维?

❺ 佳能打印机lbp2900安装的方法是怎样的

下载对应的驱动版本 lbp2900 win732 64 或lbp2900 XP,需要解压的解压后得到安装程序,进行Setup安装驱动,连接USB线等待检测,安装成功,测试,,,

❻ 基于lbp的adaboost人脸检测中弱分类器是怎么生成的

Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。使用adaboost分类器可以排除一些不必要的训练数据特征,并将关键放在关键的训练数据上面。
目前,对Adaboost算法的研究以及应用大多集中于分类问题,同时近年也出 现了一些在回归问题上的应用。就其应用Adaboost系列主要解决了: 两类问题、 多类单标签问题、多类多标签问题、大类单标签问题,回归问题。它用全部的训练样本进行学习。
该算法其实是一个简单的弱分类算法提升过程,这个过程通过不断的训练,可以提高对数据的分类能力。整个过程如下所示:
1. 先通过对N个训练样本的学习得到第一个弱分类器 ;
2. 将 分错的样本和其他的新数据一起构成一个新的N个的训练样本,通过对这个样本的学习得到第二个弱分类器 ;
3. 将 和 都分错了的样本加上其他的新样本构成另一个新的N个的训练样本,通过对这个样本的学习得到第三个弱分类器 ;
4. 最终经过提升的强分类器 。即某个数据被分为哪一类要通过 , ……的多数表决。
2.3 Adaboost(Adaptive Boosting)算法
对于boosting算法,存在两个问题:
1. 如何调整训练集,使得在训练集上训练的弱分类器得以进行;
2. 如何将训练得到的各个弱分类器联合起来形成强分类器。
针对以上两个问题,adaboost算法进行了调整:
1. 使用加权后选取的训练数据代替随机选取的训练样本,这样将训练的焦点集中在比较难分的训练数据样本上;
2. 将弱分类器联合起来,使用加权的投票机制代替平均投票机制。让分类效果好的弱分类器具有较大的权重,而分类效果差的分类器具有较小的权重。
Adaboost算法是Freund和Schapire根据在线分配算法提出的,他们详细分析了Adaboost算法错误率 的上界,以及为了使强分类器 达到错误率 ,算法所需要的最多迭代次数等相关问题。与Boosting算法不同的是,adaboost算法不需要预先知道弱学习算法学习正确率的下限即弱分类器的误差,并且最后得到的强分类器的分类精度依赖于所有弱分类器的分类精度, 这样可以深入挖掘弱分类器算法的能力。
Adaboost算法中不同的训练集是通过调整每个样本对应的权重来实现的。开始时,每个样本对应的权重是相同的,即 其中 n 为样本个数,在此样本分布下训练出一弱分类器 。对于 分类错误的样本,加大其对应的权重;而对于分类正确的样本,降低其权重,这样分错的样本就被突出出来,从而得到一个新的样本分布 。在新的样本分布下,再次对弱分类器进行训练,得到弱分类器。依次类推,经过 T 次循环,得到 T 个弱分类器,把这 T 个弱分类器按一定的权重叠加(boost)起来,得到最终想要的强分类器。
Adaboost算法的具体步骤如下:
1. 给定训练样本集 ,其中 分别对应于正例样本和负例样本; 为训练的最大循环次数;
2. 初始化样本权重 ,即为训练样本的初始概率分布;
3. 第一次迭代:
(1) 训练样本的概率分布 下,训练弱分类器:
(2) 计算弱分类器的错误率:
(3) 选取 ,使得 最小
(4) 更新样本权重:
(5) 最终得到的强分类器:
Adaboost算法是经过调整的Boosting算法,其能够对弱学习得到的弱分类器的错误进行适应性调整。上述算法中迭代了 次的主循环,每一次循环根据当前的权重分布 对样本x定一个分布P,然后对这个分布下的样本使用若学习算法得到一个错误率为 的弱分类器 ,对于这个算法定义的弱学习算法,对所有的 ,都有 ,而这个错误率的上限并不需要事先知道,实际上 。每一次迭代,都要对权重进行更新。更新的规则是:减小弱分类器分类效果较好的数据的概率,增大弱分类器分类效果较差的数据的概率。最终的分类器是 个弱分类器的加权平均。
第一部分:算法的产生
1996年Yoav Freund在Experiments with a New Boosting Algorithm中提出了AdaBoost.M1和AdaBoost.M2两种算法.其中,AdaBoost.M1是我们通常所说的Discrete AdaBoost;而AdaBoost.M2是M1的泛化形式.该文的一个结论是:当弱分类器算法使用简单的分类方法时,boosting的效果明显地统一地比bagging要好.当弱分类器算法使用C4.5时,boosting比bagging较好,但是没有前者的比较来得明显.
文献中记录的.M1算法
初始
1.获得一组样本(X)和它的分类(Y)和一个分类器(weaklearn).
2.赋予平均的权值分布D(i)
进入循环:T次
1. 赋予弱分类器权值D(i),使用弱分类器获得样本(X)到分类(Y)上的一个映射.(就是把某个X归到某个Y类中去)
2. 计算这个映射的误差e.e=各个归类错误的样本权值之和.如果e>1/2那么弱分类器训练失败,挑出循环,训练结束(这在二值检测中是不会发生的,而多值的情况就要看分类器够不够强健了)
3. 设B = e / ( 1 - e ).用于调整权值.因为e<1/2.因此0<B<1
4. 如果某样本分类正确,该样本的权值就乘以B让权值变小;如果分类错误,就让该样本的权值乘以B^-1或者不变,这样就让分类正确的样本权值降低,分类错误的样本权值升高,加强了对较难分类样本的分类能力
5. 权值均衡化
循环结束
1. 最终的分类器是,当一个X进入时,遍历所有Y,寻找使(h(x)=y的情况下,log(1/B)之和)最大者即是输出分类y
M2相比于M1的改进是允许弱分类器输出多个分类结果,并输出这几个分类结果的可能性(注意,这里不是概率)
.M2的流程是
1.获得一组样本(X)和它的分类(Y)和一个分类器(weaklearn).
2.对于某个样本Xi将它的分类归为一个正确分类Yi和其他不正确分类Yb
3.样本权值进行如下分布首先每个样本分到1/m的权值,然后每个不正确分类分到(1/m)/Yb的个数.也就是说样本权值是分到了每个不正确的分类上
进入循环
1. 求每个样本的权值,即每个样本所有不正确的分类的权值和,再求每个样本错误分类的权值,即不正确分类的权值除以该样本的权值.最后将每个样本的权值归一化
2. 将样本权值和某样本的不正确分类的权值输入到weaklearn,获得弱分类器的输出为各个分类的可能值
3. 计算伪错误率:公式见上
4. 更新权值
退出循环
最终的强分类器: 图贴不出来了...
1999年, ROBERT E. SCHAPIRE和YORAM SINGER,于Machine Learning发表论文: Improved Boosting Algorithms Using Confidence-rated Predictions.提出了更具一般性的AdaBoost形式.提出了自信率以改善AdaBoost的性能.并提出了解决多标签问题的AdaBoost.MH和AdaBoost.MR算法,其中AdaBoost.MH算法的一种形式又被称为Real Boost算法.
事实上:Discrete AdaBoost是指,弱分类器的输出值限定在{-1,+1},和与之相应的权值调整,强分类器生成的AdaBoost算法;Real AdaBoost是指,弱分类器输出一个可能度,该值的范围是整个R, 和与之相应的权值调整,强分类器生成的AdaBoost算法。事实上,Discrete到Real的转变体现了古典集合到模糊集合转变的思想
至于Gentle AdaBoost.考虑到(AdaBoost对”不像”的正样本权值调整很高,而导致了分类器的效率下降),而产生的变种算法.它较少地强调难以分类的样本.

❼ win7如何连接canon LBP2900打印机

win7连接canonLBP2900打印机的方法如下:

工具/原料:笔记本电脑,打印机。

1、点击电脑右下角的开始图标,然后再点击“控制面板”。

(7)lbp算法扩展阅读:

canonLBP2900打印机的使用注意事项

1、打印机机壳必须有良好的接地导线。否则,打印机产生静电会使机器性能不稳,影响出样质量,严重时会损坏机器和击伤人。

2、打印机内高压较多,温度较高,不能随便打开机壳。

3、此机器功率较大,温控可控硅解发频率高,最好单独使用一台稳压电源。

4、在使用过程中发生卡纸时。一定先确定卡纸部位,然后轻轻的、用巧力将卡纸取出。否则,会损坏有关部位或纸屑留在机器内影响出样质量。

5、打印机用纸,最低不能低于52g/平方米,最高不能超过130g/平方米,最好是用胶版纸或复印纸。铜版纸不能用于激光打印机,主要是印字过程中加温定形造成铜版起泡,影响使用。

6、打印机工作结束后,维护清洁工作十分重要。对光学部分的清理特别要注意不能碰撞,金属工具等不能触碰鼓芯,以免造成永久性的破坏。在清理中,注意激光器为不可见光,要注意保护眼睛。

7、用户可根据生产需要自行定期更换硒鼓芯、重复装入墨粉,硒鼓体就可多次使用;或简单清理即可获得高质量的文字、图形等。

❽ 如何计算旋转不变lbp特征维数

圆形LBP算子

基本的LBP算子的最大缺陷在于它只覆盖了一个固定半径范围内的小区域,这显然不能满足不同尺寸和频率纹理的需要。为了适应不同尺度的纹理特征,并达到灰度和旋转不变性的要求,Ojala等对
LBP 算子进行了改进,将 3×3邻域扩展到任意邻域,并用圆形邻域代替了正方形邻域,改进后的 LBP 算子允许在半径为 R
的圆形邻域内有任意多个像素点。从而得到了诸如半径为R的圆形区域内含有P个采样点的LBP算子;

❾ opencv人脸识别用哪种方法比较好EigenfacesFisherfacesLBP

在视频流中进行人脸检测,把检测出的人脸送入识别系统中进行人脸识别,并给出识别信息:是陌生人;是已经注册的。linux环境下先配置好opencv吧。

热点内容
7z解压很慢 发布:2025-01-11 16:51:23 浏览:940
电脑改文档服务器 发布:2025-01-11 16:41:14 浏览:869
编译汇编语言实例 发布:2025-01-11 16:36:55 浏览:670
海康ntp校时服务器地址 发布:2025-01-11 16:34:35 浏览:743
服务器运行超时怎么办 发布:2025-01-11 16:34:32 浏览:298
人妖迅雷种子ftp 发布:2025-01-11 16:33:04 浏览:916
python将列表转化为字符串 发布:2025-01-11 16:32:11 浏览:192
大疆稳定器wifi连接初始密码多少 发布:2025-01-11 16:25:36 浏览:890
专线服务器运行的项目如何访问 发布:2025-01-11 16:15:13 浏览:720
小米智能摄像机云存储 发布:2025-01-11 16:12:08 浏览:556