当前位置:首页 » 操作系统 » mahout算法

mahout算法

发布时间: 2023-06-12 16:03:13

A. mahout包括哪些算法

一、分类算法

(一)Logistic 回归(SGD)

(二)Bayesian 

(三)SVM

(四)Perceptron 和Winnow

(五)神经网络

(六)随机森林

(七)受限玻尔兹曼机

(八)Boosting

(九)HMM

(十)Online Passive Aggressive

二、聚类算法

(一)Canopy

(二)K-Means

(三)Fuzzy K-means

(四)EM

(五)Mean shift

(六)层次聚类

(七)Dirichlet process 

(八)LDA

(九)Spectral 

(十)MinHash

(十一)Top Down

三、推荐算法

           Mahout包括简单的非并行的推荐和基于Hadoop的并行推荐的实现。

(一)非并行推荐

(二)分布式的基于Item的协同过滤

(三)并行矩阵分解的协同过滤

四、关联规则挖掘算法

 

并行FP-Growth 

五、回归

Locally Weighted Linear Regression

六、降维

(一)SVD

(二)SSVD

(三)PCA

(四)ICA

(五)GDA

七、进化算法

八、向量相似性计算

B. mahout的fpgrowth算法可以求出置信度和规则吗

在此命令行的末尾添加Kickstart文件的位置信息,例如,下面添加的信息表示此文件保存在第二个硬盘驱动器的第一个分区上,此硬盘可能是USB驱动器。

ks=hd:sdb1:/ks.cfg

或者,如果Kickstart文件保存在引导CD上,则添加以下命令:

ks=cdrom:/ks.cfg

或者,如果Kickstart文件保存在第一个软盘驱动器上,则输入下面的位置信息:

ks=hd:fd0:/ks.cfg

这种方法需要不断尝试,可能会有错误。确实,设备文件是按顺序分配名字(sda、sdb、sdc等)。然而,除非我们用给定的存储媒介引导Linux,否则无法确定哪个设备文件指定给一个特定的设备驱动器。

C. 如何让Hadoop结合R语言做大数据分析

R语言和Hadoop让我们体会到了,两种技术在各自领域的强大。很多开发人员在计算机的角度,都会提出下面2个问题。问题1: Hadoop的家族如此之强大,为什么还要结合R语言?x0dx0a问题2: Mahout同样可以做数据挖掘和机器学习,和R语言的区别是什么?下面我尝试着做一个解答:问题1: Hadoop的家族如此之强大,为什么还要结合R语言?x0dx0ax0dx0aa. Hadoop家族的强大之处,在于对大数据的处理,让原来的不可能(TB,PB数据量计算),成为了可能。x0dx0ab. R语言的强大之处,在于统计分析,在没有Hadoop之前,我们对于大数据的处理,要取样本,假设检验,做回归,长久以来R语言都是统计学家专属的工具。x0dx0ac. 从a和b两点,我们可以看出,hadoop重点是全量数据分析,而R语言重点是样本数据分析。 两种技术放在一起,刚好是最长补短!x0dx0ad. 模拟场景:对1PB的新闻网站访问日志做分析,预测未来流量变化x0dx0ad1:用R语言,通过分析少量数据,对业务目标建回归建模,并定义指标d2:用Hadoop从海量日志数据中,提取指标数据d3:用R语言模型,对指标数据进行测试和调优d4:用Hadoop分步式算法,重写R语言的模型,部署上线这个场景中,R和Hadoop分别都起着非常重要的作用。以计算机开发人员的思路,所有有事情都用Hadoop去做,没有数据建模和证明,”预测的结果”一定是有问题的。以统计人员的思路,所有的事情都用R去做,以抽样方式,得到的“预测的结果”也一定是有问题的。所以让二者结合,是产界业的必然的导向,也是产界业和学术界的交集,同时也为交叉学科的人才提供了无限广阔的想象空间。问题2: Mahout同样可以做数据挖掘和机器学习,和R语言的区别是什么?x0dx0ax0dx0aa. Mahout是基于Hadoop的数据挖掘和机器学习的算法框架,Mahout的重点同样是解决大数据的计算的问题。x0dx0ab. Mahout目前已支持的算法包括,协同过滤,推荐算法,聚类算法,分类算法,LDA, 朴素bayes,随机森林。上面的算法中,大部分都是距离的算法,可以通过矩阵分解后,充分利用MapRece的并行计算框架,高效地完成计算任务。x0dx0ac. Mahout的空白点,还有很多的数据挖掘算法,很难实现MapRece并行化。Mahout的现有模型,都是通用模型,直接用到的项目中,计算结果只会比随机结果好一点点。Mahout二次开发,要求有深厚的JAVA和Hadoop的技术基础,最好兼有 “线性代数”,“概率统计”,“算法导论” 等的基础知识。所以想玩转Mahout真的不是一件容易的事情。x0dx0ad. R语言同样提供了Mahout支持的约大多数算法(除专有算法),并且还支持大量的Mahout不支持的算法,算法的增长速度比mahout快N倍。并且开发简单,参数配置灵活,对小型数据集运算速度非常快。x0dx0a虽然,Mahout同样可以做数据挖掘和机器学习,但是和R语言的擅长领域并不重合。集百家之长,在适合的领域选择合适的技术,才能真正地“保质保量”做软件。x0dx0ax0dx0a如何让Hadoop结合R语言?x0dx0ax0dx0a从上一节我们看到,Hadoop和R语言是可以互补的,但所介绍的场景都是Hadoop和R语言的分别处理各自的数据。一旦市场有需求,自然会有商家填补这个空白。x0dx0ax0dx0a1). RHadoopx0dx0ax0dx0aRHadoop是一款Hadoop和R语言的结合的产品,由RevolutionAnalytics公司开发,并将代码开源到github社区上面。RHadoop包含三个R包 (rmr,rhdfs,rhbase),分别是对应Hadoop系统架构中的,MapRece, HDFS, HBase 三个部分。x0dx0ax0dx0a2). RHiveRHive是一款通过R语言直接访问Hive的工具包,是由NexR一个韩国公司研发的。x0dx0ax0dx0a3). 重写Mahout用R语言重写Mahout的实现也是一种结合的思路,我也做过相关的尝试。x0dx0ax0dx0a4).Hadoop调用Rx0dx0ax0dx0a上面说的都是R如何调用Hadoop,当然我们也可以反相操作,打通JAVA和R的连接通道,让Hadoop调用R的函数。但是,这部分还没有商家做出成形的产品。x0dx0ax0dx0a5. R和Hadoop在实际中的案例x0dx0ax0dx0aR和Hadoop的结合,技术门槛还是有点高的。对于一个人来说,不仅要掌握Linux, Java, Hadoop, R的技术,还要具备 软件开发,算法,概率统计,线性代数,数据可视化,行业背景 的一些基本素质。在公司部署这套环境,同样需要多个部门,多种人才的的配合。Hadoop运维,Hadoop算法研发,R语言建模,R语言MapRece化,软件开发,测试等等。所以,这样的案例并不太多。

热点内容
php更新mysql 发布:2025-04-05 07:07:50 浏览:578
android播放代码 发布:2025-04-05 07:02:54 浏览:92
c语言起头 发布:2025-04-05 07:00:38 浏览:206
gad数据库 发布:2025-04-05 06:48:39 浏览:425
linuxyy 发布:2025-04-05 06:39:25 浏览:415
px4编译时内存不足卡死 发布:2025-04-05 06:36:13 浏览:878
mac执行脚本 发布:2025-04-05 06:29:38 浏览:867
算法实现层 发布:2025-04-05 06:29:35 浏览:756
mac关闭共享文件夹共享 发布:2025-04-05 06:27:58 浏览:266
印藏数据库 发布:2025-04-05 06:27:14 浏览:18