当前位置:首页 » 操作系统 » 伪度量算法

伪度量算法

发布时间: 2023-06-11 07:16:55

① DBSCAN原理和算法伪代码,与kmeans,OPTICS区别

DBSCAN(Density-Based Spatial Clustering of Applications with Noise)聚类算法,它是一种基于高密度连通区域的、基于密度的聚类算法,能够将具有足够高密度的区域划分为簇,并在具有噪声的数据中发现任意形状的簇。我们总结一下DBSCAN聚类算法原理的基本要点:
DBSCAN算法需要选择一种距离度量,对于待聚类的数据集中,任意两个点之间的距离,反映了点之间的密度,说明了点与点是否能够聚到同一类中。由于DBSCAN算法对高维数据定义密度很困难,所以对于二维空间中的点,可以使用欧几里德距离来进行度量。
DBSCAN算法需要用户输入2个参数:一个参数是半径(Eps),表示以给定点P为中心的圆形邻域的范围;另一个参数是以点P为中心的邻域内最少点的数量(MinPts)。如果满足:以点P为中心、半径为Eps的邻域内的点的个数不少于MinPts,则称点P为核心点。
DBSCAN聚类使用到一个k-距离的概念,k-距离是指:给定数据集P={p(i); i=0,1,…n},对于任意点P(i),计算点P(i)到集合D的子集S={p(1), p(2), …, p(i-1), p(i+1), …, p(n)}中所有点之间的距离,距离按照从小到大的顺序排序,假设排序后的距离集合为D={d(1), d(2), …, d(k-1), d(k), d(k+1), …,d(n)},则d(k)就被称为k-距离。也就是说,k-距离是点p(i)到所有点(除了p(i)点)之间距离第k近的距离。对待聚类集合中每个点p(i)都计算k-距离,最后得到所有点的k-距离集合E={e(1), e(2), …, e(n)}。
根据经验计算半径Eps:根据得到的所有点的k-距离集合E,对集合E进行升序排序后得到k-距离集合E’,需要拟合一条排序后的E’集合中k-距离的变化曲线图,然后绘出曲线,通过观察,将急剧发生变化的位置所对应的k-距离的值,确定为半径Eps的值。
根据经验计算最少点的数量MinPts:确定MinPts的大小,实际上也是确定k-距离中k的值,DBSCAN算法取k=4,则MinPts=4。
另外,如果觉得经验值聚类的结果不满意,可以适当调整Eps和MinPts的值,经过多次迭代计算对比,选择最合适的参数值。可以看出,如果MinPts不变,Eps取得值过大,会导致大多数点都聚到同一个簇中,Eps过小,会导致已一个簇的分裂;如果Eps不变,MinPts的值取得过大,会导致同一个簇中点被标记为噪声点,MinPts过小,会导致发现大量的核心点。
我们需要知道的是,DBSCAN算法,需要输入2个参数,这两个参数的计算都来自经验知识。半径Eps的计算依赖于计算k-距离,DBSCAN取k=4,也就是设置MinPts=4,然后需要根据k-距离曲线,根据经验观察找到合适的半径Eps的值,下面的算法实现过程中,我们会详细说明。对于算法的实现,首先我们概要地描述一下实现的过程:
1)解析样本数据文件。2)计算每个点与其他所有点之间的欧几里德距离。3)计算每个点的k-距离值,并对所有点的k-距离集合进行升序排序,输出的排序后的k-距离值。4)将所有点的k-距离值,在Excel中用散点图显示k-距离变化趋势。5)根据散点图确定半径Eps的值。)根据给定MinPts=4,以及半径Eps的值,计算所有核心点,并建立核心点与到核心点距离小于半径Eps的点的映射。7)根据得到的核心点集合,以及半径Eps的值,计算能够连通的核心点,得到噪声点。8)将能够连通的每一组核心点,以及到核心点距离小于半径Eps的点,都放到一起,形成一个簇。9)选择不同的半径Eps,使用DBSCAN算法聚类得到的一组簇及其噪声点,使用散点图对比聚类效果。
算法伪代码:
算法描述:
算法:DBSCAN
输入:E——半径
MinPts——给定点在E邻域内成为核心对象的最小邻域点数。
D——集合。
输出:目标类簇集合
方法:Repeat
1)判断输入点是否为核心对象
2)找出核心对象的E邻域中的所有直接密度可达点。
Until 所有输入点都判断完毕。
Repeat
针对所有核心对象的E邻域内所有直接密度可达点找到最大密度相连对象集合,中间涉及到一些密度可达对象的合并。Until 所有核心对象的E领域都遍历完毕
DBSCAN和Kmeans的区别:
1)K均值和DBSCAN都是将每个对象指派到单个簇的划分聚类算法,但是K均值一般聚类所有对象,而DBSCAN丢弃被它识别为噪声的对象。
2)K均值使用簇的基于原型的概念,而DBSCAN使用基于密度的概念。
3)K均值很难处理非球形的簇和不同大小的簇。DBSCAN可以处理不同大小或形状的簇,并且不太受噪声和离群点的影响。当簇具有很不相同的密度时,两种算法的性能都很差。
4)K均值只能用于具有明确定义的质心(比如均值或中位数)的数据。DBSCAN要求密度定义(基于传统的欧几里得密度概念)对于数据是有意义的。
5)K均值可以用于稀疏的高维数据,如文档数据。DBSCAN通常在这类数据上的性能很差,因为对于高维数据,传统的欧几里得密度定义不能很好处理它们。
6)K均值和DBSCAN的最初版本都是针对欧几里得数据设计的,但是它们都被扩展,以便处理其他类型的数据。
7)基本K均值算法等价于一种统计聚类方法(混合模型),假定所有的簇都来自球形高斯分布,具有不同的均值,但具有相同的协方差矩阵。DBSCAN不对数据的分布做任何假定。
8)K均值DBSCAN和都寻找使用所有属性的簇,即它们都不寻找可能只涉及某个属性子集的簇。
9)K均值可以发现不是明显分离的簇,即便簇有重叠也可以发现,但是DBSCAN会合并有重叠的簇。
10)K均值算法的时间复杂度是O(m),而DBSCAN的时间复杂度是O(m^2),除非用于诸如低维欧几里得数据这样的特殊情况。
11)DBSCAN多次运行产生相同的结果,而K均值通常使用随机初始化质心,不会产生相同的结果。
12)DBSCAN自动地确定簇个数,对于K均值,簇个数需要作为参数指定。然而,DBSCAN必须指定另外两个参数:Eps(邻域半径)和MinPts(最少点数)。
13)K均值聚类可以看作优化问题,即最小化每个点到最近质心的误差平方和,并且可以看作一种统计聚类(混合模型)的特例。DBSCAN不基于任何形式化模型。
DBSCAN与OPTICS的区别:
DBSCAN算法,有两个初始参数E(邻域半径)和minPts(E邻域最小点数)需要用户手动设置输入,并且聚类的类簇结果对这两个参数的取值非常敏感,不同的取值将产生不同的聚类结果,其实这也是大多数其他需要初始化参数聚类算法的弊端。
为了克服DBSCAN算法这一缺点,提出了OPTICS算法(Ordering Points to identify the clustering structure)。OPTICS并 不显示的产生结果类簇,而是为聚类分析生成一个增广的簇排序(比如,以可达距离为纵轴,样本点输出次序为横轴的坐标图),这个排序代表了各样本点基于密度 的聚类结构。它包含的信息等价于从一个广泛的参数设置所获得的基于密度的聚类,换句话说,从这个排序中可以得到基于任何参数E和minPts的DBSCAN算法的聚类结果。
OPTICS两个概念:
核心距离:对象p的核心距离是指是p成为核心对象的最小E’。如果p不是核心对象,那么p的核心距离没有任何意义。
可达距离:对象q到对象p的可达距离是指p的核心距离和p与q之间欧几里得距离之间的较大值。如果p不是核心对象,p和q之间的可达距离没有意义。
算法描述:OPTICS算法额外存储了每个对象的核心距离和可达距离。基于OPTICS产生的排序信息来提取类簇。

② 如何评价一个算法的好坏

首先,这个算法必须是正确的
其次,好的算法应该是友好的,便于人们理解和交流,并且是机器可执行的。
这个算法还需要足够健壮,即当输入的数据非法或不合理时,也能适当的做出正确的反应或进行相应的处理
最后它还必须拥有高效率和低存储量要求。
也就是所谓的时间复杂度和空间复杂度

1.时间复杂度

定义:在计算机科学中,算法的时间复杂度是一个函数,他定量描述了该算法的运行时间.一个算法执行所耗费的时间,从理论上讲,只有你把你的程序放机器上跑起来,才能知道.然而我们有一套时间复杂度的分析方式.一个算法所花费的时间与其中语句的执行次数成正比例.算法中的基本操作的执行次数,为算法的时间复杂度.

2.时间复杂度为什么不使用时间来衡量而使用基本语句的运行次数来衡量?

算法的执行时间依赖于具体的软硬件环境,所以,不能用执行时间的长短来衡量算法的时间复杂度,而要通过基本语句执行次数的数量级来衡量。

3.时间复杂度的O渐进表示法(Big O notation)

是用于描述函数渐进行为的数学符号.

大O阶方法推导:
计算基本语句的执行次数的数量级;
只需计算基本语句执行次数的数量级,这就意味着只要保证基本语句执行次数的函数中的最高次幂正确即可,可以忽略所有低次幂和最高次幂的系数。这样能够简化算法分析,并且使注意力集中在最重要的一点上:增长率。
如果算法中包含嵌套的循环,则基本语句通常是最内层的循环体,如果算法中包含并列的循环,则将并列循环的时间复杂度相加。例如:

for (i=1; i<=n; i++)
x++;
for (i=1; i<=n; i++)
for (j=1; j<=n; j++)
x++;

第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为Ο(n2),则整个算法的时间复杂度为Ο(n+n2)=Ο(n2)。

4.时间复杂度的:最优、平均、最差情况,为什么时间复杂度看的是最差情况?

最差情况下的复杂度是所有可能的输入数据所消耗的最大资源,如果最差情况下的复杂度符合我们的要求,我们就可以保证所有的情况下都不会有问题。

某些算法经常遇到最差情况。比如一个查找算法,经常需要查找一个不存在的值。
也许你觉得平均情况下的复杂度更吸引你,可是平均情况也有几点问题。第一,难计算,多数算法的最差情况下的复杂度要比平均情况下的容易计算的多,第二,有很多算法的平均情况和最差情况的复杂度是一样的. 第三,什么才是真正的平均情况?如果你假设所有可能的输入数据出现的概率是一样的话,也是不合理的。其实多数情况是不一样的。而且输入数据的分布函数很可能是你没法知道。
考虑最好情况的复杂度更是没有意义。

5.如何求解:二分查找、递归求阶乘、递归斐波那契的时间复杂度?

二分查找:通过折纸查找求解时间复杂度为O(logN);
递归求阶乘:数基本操作递归N次得到时间复杂度为O(N);
递归斐波那契:分析得出基本操作递归了2N次,时间复杂度为O(2N);

6.什么是空间复杂度?

空间复杂度是对一个算法在运行过程中临时占用存储空间大小的度量.空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数.空间复杂度计算规则基本跟时间复杂度类似,也使用大O渐进法表示.

7.如何求空间复杂度? 普通函数&递归函数

一个算法的空间复杂度只考虑在运行过程中为局部变量分配的存储空间的大小,它包括为参数表中形参变量分配的存储空间和为在函数体中定义的局部变量分配的存储空间两个部分。若一个算法为 递归算法,其空间复杂度为递归所使用的堆栈空间的大小,它等于一次调用所分配的临时存储空间的大小乘以被调用的次数(即为递归调用的次数加1,这个1表示开始进行的一次非递归调用)。算法的空间复杂度一般也以数量级的形式给出。如当一个算法的空间复杂度为一个常量,即不随被处理数据量n的大小而改变时,可表示为O(1);当一个算法的空间复杂度与以2为底的n的对数成正比时,可表示为O(log2n);当一个算法的空间复杂度与n成线性比例关系时,可表示为O(n).若形参为数组,则只需要为它分配一个存储由实参传送来的一个地址指针的空间,即一个机器字长空间;若形参为引用方式,则也只需要为其分配存储一个地址的空间,用它来存储对应实参变量的地址,以便由系统自动引用实参变量。
8. 分析递归斐波那契数列的:时间、空间复杂度,并对其进行优化,伪递归优化->循环优化

long long Fib(int N) {
if (N < 3)
return 1;
return Fib(N - 1) + Fib(N - 2);
}

普通递归实现的斐波那契数列:
时间复杂度:O(2^n)

计算并根据O渐进表示法得出时间复杂度.

空间复杂度:O(N);递归深度乘以(每一次递归的空间占用{有辅助空间或常量})

伪递归优化:

long long fib (long long first, longlong second, int N) {
if(N <3)
return 1;
if(N == 3)
return first + second;
return fib(second, first+second,N-1);
}

时间复杂度:
O(N);
递归深度乘以每次递归的循环次数
空间复杂度:
O(1)或O(N)
关键看编译器是否优化,优化则为O(1)否则O(N);

循环优化:

long long Fib(int N) {
long long first = 1;
long long second = 1;
long long ret = 0;
for (int i = 3; i <= N ; ++i) {
ret = first + second;
first = second;
second = ret;
}
return second;
}

时间复杂度:O(N);

空间复杂度:O(1);

9.常见时间复杂度

常见的算法时间复杂度由小到大依次为: Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)<…<Ο(2n)<Ο(n!) Ο(1)表示基本语句的执行次数是一个常数,一般来说,只要算法中不存在循环语句,其时间复杂度就是Ο(1)。Ο(log2n)、Ο(n)、Ο(nlog2n)、Ο(n2)和Ο(n3)称为多项式时间,而Ο(2n)和Ο(n!)称为指数时间。

③ 机器学习实战的作品目录

目录第一部分分类第1章机器学习基础21.1 何谓机器学习31.1.1 传感器和海量数据41.1.2 机器学习非常重要51.2 关键术语51.3 机器学习的主要任务71.4 如何选择合适的算法81.5 开发机器学习应用程序的步骤91.6 Python语言的优势101.6.1 可执行伪代码101.6.2 Python比较流行101.6.3 Python语言的特色111.6.4 Python语言的缺点111.7 NumPy函数库基础121.8 本章小结13第2章k-近邻算法 152.1 k-近邻算法概述152.1.1 准备:使用Python导入数据172.1.2 从文本文件中解析数据192.1.3 如何测试分类器202.2 示例:使用k-近邻算法改进约会网站的配对效果202.2.1 准备数据:从文本文件中解析数据212.2.2 分析数据:使用Matplotlib创建散点图232.2.3 准备数据:归一化数值252.2.4 测试算法:作为完整程序验证分类器262.2.5 使用算法:构建完整可用系统272.3 示例:手写识别系统282.3.1 准备数据:将图像转换为测试向量292.3.2 测试算法:使用k-近邻算法识别手写数字302.4 本章小结31第3章决策树 323.1 决策树的构造333.1.1 信息增益353.1.2 划分数据集373.1.3 递归构建决策树393.2 在Python中使用Matplotlib注解绘制树形图423.2.1 Matplotlib注解433.2.2 构造注解树443.3 测试和存储分类器483.3.1 测试算法:使用决策树执行分类493.3.2 使用算法:决策树的存储503.4 示例:使用决策树预测隐形眼镜类型503.5 本章小结52第4章基于概率论的分类方法:朴素贝叶斯 534.1 基于贝叶斯决策理论的分类方法534.2 条件概率554.3 使用条件概率来分类564.4 使用朴素贝叶斯进行文档分类574.5 使用Python进行文本分类584.5.1 准备数据:从文本中构建词向量584.5.2 训练算法:从词向量计算概率604.5.3 测试算法:根据现实情况修改分类器624.5.4 准备数据:文档词袋模型644.6 示例:使用朴素贝叶斯过滤垃圾邮件644.6.1 准备数据:切分文本654.6.2 测试算法:使用朴素贝叶斯进行交叉验证664.7 示例:使用朴素贝叶斯分类器从个人广告中获取区域倾向684.7.1 收集数据:导入RSS源684.7.2 分析数据:显示地域相关的用词714.8 本章小结72第5章Logistic回归 735.1 基于Logistic回归和Sigmoid函数的分类745.2 基于最优化方法的最佳回归系数确定755.2.1 梯度上升法755.2.2 训练算法:使用梯度上升找到最佳参数775.2.3 分析数据:画出决策边界795.2.4 训练算法:随机梯度上升805.3 示例:从疝气病症预测病马的死亡率855.3.1 准备数据:处理数据中的缺失值855.3.2 测试算法:用Logistic回归进行分类865.4 本章小结88第6章支持向量机896.1 基于最大间隔分隔数据896.2 寻找最大间隔916.2.1 分类器求解的优化问题926.2.2 SVM应用的一般框架936.3 SMO高效优化算法946.3.1 Platt的SMO算法946.3.2 应用简化版SMO算法处理小规模数据集946.4 利用完整Platt SMO算法加速优化996.5 在复杂数据上应用核函数1056.5.1 利用核函数将数据映射到高维空间1066.5.2 径向基核函数1066.5.3 在测试中使用核函数1086.6 示例:手写识别问题回顾1116.7 本章小结113第7章利用AdaBoost元算法提高分类性能 1157.1 基于数据集多重抽样的分类器1157.1.1 bagging:基于数据随机重抽样的分类器构建方法1167.1.2 boosting1167.2 训练算法:基于错误提升分类器的性能1177.3 基于单层决策树构建弱分类器1187.4 完整AdaBoost算法的实现1227.5 测试算法:基于AdaBoost的分类1247.6 示例:在一个难数据集上应用AdaBoost1257.7 非均衡分类问题1277.7.1 其他分类性能度量指标:正确率、召回率及ROC曲线1287.7.2 基于代价函数的分类器决策控制1317.7.3 处理非均衡问题的数据抽样方法1327.8 本章小结132第二部分利用回归预测数值型数据第8章预测数值型数据:回归 1368.1 用线性回归找到最佳拟合直线1368.2 局部加权线性回归1418.3 示例:预测鲍鱼的年龄1458.4 缩减系数来“理解”数据1468.4.1 岭回归1468.4.2 lasso1488.4.3 前向逐步回归1498.5 权衡偏差与方差1528.6 示例:预测乐高玩具套装的价格1538.6.1 收集数据:使用Google购物的API1538.6.2 训练算法:建立模型1558.7 本章小结158第9章树回归1599.1 复杂数据的局部性建模1599.2 连续和离散型特征的树的构建1609.3 将CART算法用于回归1639.3.1 构建树1639.3.2 运行代码1659.4 树剪枝1679.4.1 预剪枝1679.4.2 后剪枝1689.5 模型树1709.6 示例:树回归与标准回归的比较1739.7 使用Python的Tkinter库创建GUI1769.7.1 用Tkinter创建GUI1779.7.2 集成Matplotlib和Tkinter1799.8 本章小结182第三部分无监督学习第10章利用K-均值聚类算法对未标注数据分组18410.1 K-均值聚类算法18510.2 使用后处理来提高聚类性能18910.3 二分K-均值算法19010.4 示例:对地图上的点进行聚类19310.4.1 Yahoo! PlaceFinder API19410.4.2 对地理坐标进行聚类19610.5 本章小结198第11章使用Apriori算法进行关联分析20011.1 关联分析20111.2 Apriori原理20211.3 使用Apriori算法来发现频繁集20411.3.1 生成候选项集20411.3.2 组织完整的Apriori算法20711.4 从频繁项集中挖掘关联规则20911.5 示例:发现国会投票中的模式21211.5.1 收集数据:构建美国国会投票记录的事务数据集21311.5.2 测试算法:基于美国国会投票记录挖掘关联规则21911.6 示例:发现毒蘑菇的相似特征22011.7 本章小结221第12章使用FP-growth算法来高效发现频繁项集22312.1 FP树:用于编码数据集的有效方式22412.2 构建FP树22512.2.1 创建FP树的数据结构22612.2.2 构建FP树22712.3 从一棵FP树中挖掘频繁项集23112.3.1 抽取条件模式基23112.3.2 创建条件FP树23212.4 示例:在Twitter源中发现一些共现词23512.5 示例:从新闻网站点击流中挖掘23812.6 本章小结239第四部分其他工具第13章利用PCA来简化数据24213.1 降维技术24213.2 PCA24313.2.1 移动坐标轴24313.2.2 在NumPy中实现PCA24613.3 示例:利用PCA对半导体制造数据降维24813.4 本章小结251第14章利用SVD简化数据25214.1 SVD的应用25214.1.1 隐性语义索引25314.1.2 推荐系统25314.2 矩阵分解25414.3 利用Python实现SVD25514.4 基于协同过滤的推荐引擎25714.4.1 相似度计算25714.4.2 基于物品的相似度还是基于用户的相似度?26014.4.3 推荐引擎的评价26014.5 示例:餐馆菜肴推荐引擎26014.5.1 推荐未尝过的菜肴26114.5.2 利用SVD提高推荐的效果26314.5.3 构建推荐引擎面临的挑战26514.6 基于SVD的图像压缩26614.7 本章小结268第15章大数据与MapRece27015.1 MapRece:分布式计算的框架27115.2 Hadoop流27315.2.1 分布式计算均值和方差的mapper27315.2.2 分布式计算均值和方差的recer27415.3 在Amazon网络服务上运行Hadoop程序27515.3.1 AWS上的可用服务27615.3.2 开启Amazon网络服务之旅27615.3.3 在EMR上运行Hadoop作业27815.4 MapRece上的机器学习28215.5 在Python中使用mrjob来自动化MapRece28315.5.1 mrjob与EMR的无缝集成28315.5.2 mrjob的一个MapRece脚本剖析28415.6 示例:分布式SVM的Pegasos算法28615.6.1 Pegasos算法28715.6.2 训练算法:用mrjob实现MapRece版本的SVM28815.7 你真的需要MapRece吗?29215.8 本章小结292附录A Python入门294附录B 线性代数303附录C 概率论复习309附录D 资源312索引313版权声明316

④ 各类场景应用中涉及的AI算法汇总

整理了各类场景应用中AI算法

一、图像CV

内容安全,目标检测,图像识别,智能视觉生产,图像搜索,图像分割,物体检测,图像分类,图像标签,名人识别,概念识别,场景识别,物体识别,场景分析,智能相册,内容推荐,图库管理,网红人物识别,明星人物识别,图像搜索,商品图片搜索,版权图片搜索,通用图片搜索,车牌识别,垃圾分类,车辆检测,菜品识别,车型识别,犬类识别,实例分割,风格迁移,智能填充,智能识图,拍照搜商品,精准广告投放,电商导购,图像分析,图像理解,图像处理,图像质量评估,场景识别,物体识别,场所识别,图像自训练平台,图像分类,目标检测,图像分割,关键点检测,图像生成,场景文字识别,度量学习,图像识别,图像比对,图像分类使用手册,图像分类API文档目标检测使用手册,目标检测API文档Logo检测使用手册,Logo检测API文档,通用图片搜索,车牌识别,垃圾分类,车辆检测,车型识别,犬类识别,实例分割,风格迁移,智能填充,车牌识别,相册聚类,场景与物体识别,无限天空,图像识别引擎,黄色图片识别,暴力图像识别,工业轮胎智能检测,肋骨骨折识别,显微识别,图像处理,广告识别,人脸算法,人体算法,图像识别,图像增强,OCR,图像处理,ZoomAI,智能贴图,智能制作,质量评价,图像识别,智能鉴黄,图像识别,实时手写识别,唇语识别,通用文字识别,手写文字识别,图像技术,图像识别,图像审核,图像搜索,图像增强,图像特效,车辆分析,图像生成,绘画机器人独家,动漫化身独家,像素风独家,超清人像独家,图像融合,换脸技术,神奇变脸,图像风格化,证件照生成,线稿图像识别,宝宝检测,图像分类,圉像深度估计,天空分割,食物分割,猫狗脸技术,食物识别独家,图像美学评分,车辆分析,车型识别,车型识别(含指导价),车型识别(含配置参数),车标识别,人脸识别(活体),车牌识别,表情识别,安全帽识别,计算机影像,计算机视觉,聚焦光学字符识别、人脸识别、质检、感知、理解、交互,图像视频分析,Logo检测,内容审核,智能批改,笔记评估,思维导图评估,物体检测,物体识别。

二、人脸、体态、眼瞳、声音、指纹

人脸分割人脸识别,无,人体分析HAS,识别人的年龄,性别,穿着信息,客流统计分析,智能客服,热点区域分析,人体检测,人脸口罩识别,人脸对比,人脸搜索,人脸检测与属性分析,人脸活体检测,人体关键点检测,行人重识别,细粒度人像分割,人像分割,人脸解析,3D人体姿态估计,人脸融合,人脸识别,换脸甄别,人脸支付,人脸核身,人像变换,人脸试妆,人脸融合,人体分析,手势识别,人脸验证与检索,人脸比对,人脸比对sensetime,人脸水印照比对,静默活体检测,静默活体检测sensetime,人脸检测和属性分析,人脸特征分析tuputech,配合式活体检测,人脸安防,计算机视觉,智能应用服务,人脸查询人脸分析人脸统计名单库管理人脸布控,人脸应用,人体应用,人体查询,车辆查询车辆分析车辆统计车辆布控车辆名单库管理,车辆应用,人脸图像识别人体图像识别车辆图像识别,图像识别,图像比对,人脸比对,人体检测,人脸口罩识别,人脸对比,人脸搜索,人脸检测与属性分析,人脸活体检测,人体关键点检测,行人重识别,细粒度人像分割,人像分割,人脸解析,3D人体姿态估计,人脸融合,人脸识别,人脸检测,人脸比对,人脸搜索,人脸关键点,稠密关键点,人脸属性,情绪识别,颜值评分,视线估计,皮肤分析,3D人脸重建,面部特征分析人体识别,人体检测,人体关键点,人体抠像,人体属性,手势识别人像处理,美颜美型,人脸融合,滤镜,声纹识别支付,语音合成,语音合成,声纹识别,语音唤醒,人脸识别引擎,摄像头人脸识别,图片人脸检测,身份识别,人脸识别,人脸属性,人体识别,声纹识别,衣服检索及聚类,语音分析,声纹识别,说话人归档,人脸和人体识别,人脸检测,手势识别,人脸与人体识别,人脸识别云服务,人脸识别私有化,人脸离线识别SDK,人脸实名认证,人像特效,人体分析,人脸技不,皮肤分析独家,头部分割,宏观人脸分析,人脸关键点检测,微观人脸分析独家,头发分析独家,五官分割,头发分割人体技术,人体外轮廓点检测独家,精细化人像抠图,人体框检测,肢体关键点检测,人像分割,服饰识别,手势识别,皮肤分割,人脸,说话人识别,人脸检测识别,人脸1:1比对,人脸检测,AI人脸/人形车辆,大数据人像图片防伪,QoS保障,CDN,表情识别,举手动作识别,人脸检测,网络切片,边缘计算,人脸分析,人脸检测,人脸搜索,人体分析,手势识别,着装检测,人脸识别,行为检测,人脸识别,人形检测,行为分析,人脸检测,人脸跟踪,人脸比对,人脸查找,人脸属性分析,活体检测,声音指纹,声纹识别。

三、视频

视频分割、视频处理、视频理解、智能视觉、多媒体,视频内容分析,人体动作监控,视频分类,智能交通,人/动物轨迹分析,目标计数,目标跟踪,视频编辑-,精彩片段提取,新闻视频拆分,视频摘要,视频封面,视频拆条,视频标签-,视频推荐,视频搜索,视频指纹-,数字版权管理,广告识别,视频快速审核,视频版权,视频查重,视频换脸,车辆解析, 体育 视频摘要,视频内容分析,颜色识别,货架商品检测, 时尚 搭配,危险动作识别,无,无,视频,视频换脸,车辆解析, 体育 视频摘要,视频内容分析,颜色识别,货架商品检测, 时尚 搭配,危险动作识别,菜品识别,视频识别引擎,结肠息肉检测,胃镜评估系统,视频标签,场景识别,客流分析,手势识别,视频技术,短视频标签,视觉看点识别,动态封面图自动生成,智能剪辑,新闻拆条,智能插帧,视频技术,多模态媒资检索公测中,媒体内容分析,媒体内容审核,视频生成,视频动作识别,

四、ocr文字识别

手写识别,票据识别,通用文档,通用卡证,保险智能理赔,财税报销电子化,证照电子化审批,票据类文字识别,行业类文字识别,证件类文字识别,通用类文字识别,通用文字识别,驾驶证识别,身份证识别,增值税发票识别,行驶证识别,营业执照识别,银行卡识别,增值税发票核验,营业执照核验,智能扫码,行业文档识别, 汽车 相关识别,票据单据识别,卡证文字识别,通用文字识别,手写文字识别,印刷文字识别,银行卡识别,名片识别,身份证识别intsig,营业执照识别intsig,增值税发票识别intsig,拍照速算识别,公式识别,指尖文字识别,驾驶证识别JD,行驶证识别JD,车牌识别JD,身份证识别,增值税发票识别,营业执照识别,火车票识别,出租车发票识别,印刷文字识别(多语种),印刷文字识别(多语种)intsig内容审核,色情内容过滤,政治人物检查,暴恐敏感信息过滤,广告过滤,OCR自定义模板使用手册,OCR自定义模板API文档,通用文字识别,驾驶证识别,身份证识别,增值税发票识别,行驶证识别,营业执照识别,银行卡识别,身份证识别,驾驶证识别,行驶证识别,银行卡识别,通用文字识别,自定义模板文字识别,文字识别引擎,身份证识别,图片文字识别,通用文字识别,身份证识别,名片识别,光学字符识别服务,通用文字识别,手写体文字识别,表格识别,整题识别(含公式),购物小票识别,身份证识别,名片识别,自定义模板文字识别,文字识别,通用文字识别,银行卡识别,身份证识别,字幕识别,网络图片识别, 游戏 直播关键字识别,新闻标题识别,OCR文字识别,通用场景文字识别,卡证文字识别,财务票据文字识别,医疗票据文字识别, 汽车 场景文字识别,教育场景文字识别,其他场景文字识别,iOCR自定义模板文字识别,通用类OCR,通用文本识别(中英)通用文本识别(多语言)通用表格识别,证照类OCR,身份证社保卡户口本护照名片银行卡结婚证离婚证房产证不动产证,车辆相关OCR,行驶证驾驶证车辆合格证车辆登记证,公司商铺类OCR,商户小票税务登记证开户许可证营业执照组织机构代码证,票据类OCR,增值税发票增值税卷票火车票飞机行程单出租车发票购车发票智能技术,票据机器人证照机器人文本配置机器人表格配置机器人框选配置机器人,文字识别,行驶证识别,驾驶证识别,表单识别器,通用文本,财务票据识别,机构文档识别,个人证件识别,车辆相关识别,通用表格,印章识别,财报识别,合同比对,识别文字识别,签名比对,OCR识别,教育OCR,印刷识别,手写识别,表格识别,公式识别,试卷拆录

五、自然语言NPL

文本相似度,文本摘要,文本纠错,中心词提取,文本信息抽取,智能文本分类,命名实体,词性标注,多语言分词,NLP基础服务,地址标准化,商品评价解析智能短信解析,机器阅读理解,金融研报信息识别,法律案件抽取,行业问答推理,行业知识图谱构建,文本实体关系抽取,搜索推荐,知识问答,短文本相似度,文本实体抽取, 情感 倾向分析,兴趣画像匹配,文本分类-多标签,文本分类-单标签,定制自然语言处理,语言生成,语言理解,自然语言处理基础,文本摘要,数据转文字,文本生成,智能问答系统,内容推荐,评价分析,文本分类,对话理解,意图理解, 情感 分析,观点抽取,中文分词,短文本相似度,关键词提取,词向量,命名实体,识别依存,句法分析, 情感 分析,评论观点抽取,短文本相似度,机器翻译,词法分析,词义相似度,词向量,句法分析,文本分类,短语挖掘,闲聊,文本流畅度,同义词,聚类,语言模型填空,新闻热词生成,机器阅读理解,商品信息抽取,词法分析, 情感 分析,关键词提取,用户评论分析,资讯热点挖掘,AIUI人机交互,文本纠错,词法分析,依存句法分析,语义角色标注,语义依存分析(依存树),语义依存分析(依存图), 情感 分析,关键词提取,NLP能力生产平台,NLP基础技术,中文词法分析-LAC,词向量—Word2vec,语言模型—Language_model,NLP核心技术, 情感 分析、文本匹配、自然语言推理、词法分析、阅读理解、智能问答,信息检索、新闻推荐、智能客服, 情感 分析、文本匹配、自然语言推理、词法分析、阅读理解、智能问答,机器问答、自然语言推断、 情感 分析和文档排序,NLP系统应用,问答系统对话系统智能客服,用户消费习惯理解热点话题分析舆情监控,自然语言处理,文本分类使用手册,文本分类API文档, 情感 分析,评论观点抽取,短文本相似度,机器翻译,词法分析,词义相似度,词向量,句法分析,文本分类,短语挖掘,闲聊,文本流畅度,同义词,聚类,语言模型填空,新闻热词生成,机器阅读理解,商品信息抽取智能创作,智能写作,搭配短文,种草标题,卖点标题,社交电商营销文案,自然语言处理能力,基础文本分析,分词、词性分析技术,词向量表示,依存句法分析,DNN语言模型,语义解析技术,意图成分识别, 情感 分析,对话情绪识别,文本相似度检测,文本解析和抽取技术,智能信息抽取,阅读理解,智能标签,NLG,自动摘要,自动写文章,语言处理基础技术,文本审核, 情感 分析,机器翻译,智能聊天,自然语言,基于标题的视频标签,台词看点识别,意图识别,词法分析,相关词,舆情分析,流量预测,标签技术,自然语言处理,语义对话,自然语言处理,车型信息提取,关键词提取,语义理解,语义相似度,意图解析,中文词向量,表示依存,句法分析,上下文理解,词法分析,意图分析,情绪计算,视觉 情感 ,语音 情感 , 情感 分析,沉浸式阅读器,语言理解,文本分析,自然语言处理,在线语音识别,自然语言理解火速上线中, 情感 判别,语义角色标注,依存句法分析,词性标注,实体识别,中文分词,分词,

6、知识图谱

知识图谱,药学知识图谱,智能分诊,腾讯知识图谱,无,药学知识图谱,智能分诊,知识理解,知识图谱Schema,图数据库BGraph,知识图谱,语言与知识,语言处理基础技术,语言处理应用技术,知识理解,文本审核,智能对话定制平台,智能文档分析平台,智能创作平台,知识图谱,实体链接,意图图谱,识别实体,逻辑推理,知识挖掘,知识卡片

7、对话问答机器人

智能问答机器人,智能语音助手,智能对话质检,智能话务机器人,无,电话机器人,NeuHub助力京东智能客服升级,腾讯云小微,智能硬件AI语音助手,对话机器人,无,问答系统对话系统智能客服,Replika对话技术,客服机器人,智能问答,智能场景,个性化回复,多轮交互,情绪识别,智能客服,金融虚拟客服,电话质检,AI语音交互机器人,中移云客服·智能AI外呼,人机对话精准语义分析

8、翻译

协同翻译工具平台,电商内容多语言工具,文档翻译,专业版翻译引擎,通用版翻译引擎,无,机器翻译,无,机器翻译,音视频字幕平台,机器翻译,机器翻译niutrans,文本翻译,语音翻译,拍照翻译,机器翻译,机器翻译,文本翻译,语音翻译,通用翻译,自然语言翻译服务,文本翻译,图片翻译,语音翻译,实时语音翻译,文档翻译(开发版,机器翻译,文本翻译,语音翻译,拍照翻译,机器翻译实时长语音转写,录音文件长语音转写,翻译工具,机器翻译火速上线中

9、声音

便携智能语音一体机,语音合成声音定制,语音合成,一句话识别,实时语音识别录音文件识别,客服电话,语音录入,语音指令,语音对话,语音识别,科学研究,安防监控,声音分类,语音合成,语音识别,实时语音转写,定制语音合成,定制语音识别,语音合成,语音合成声音定制,离线语音合成,短语音识别,录音文件识别,声纹识别,离线语音识别,实时语音识别,呼叫中心短语音识别,呼叫中心录音文件识别,呼叫中心实时语音识别,语音识别,语音合成,声纹识别,语音识别,语音听写,语音转写,实时语音转写,语音唤醒,离线命令词识别,离线语音听写,语音合成,在线语音合成,离线语音合成,语音分析,语音评测,性别年龄识别,声纹识别,歌曲识别,A.I.客服平台能力中间件,语音识别,语音交互技术,语音合成,语音合成声音定制,离线语音合成,短语音识别,录音文件识别,声纹识别,离线语音识别,实时语音识别,呼叫中心短语音识别,呼叫中心录音文件识别,呼叫中心实时语音识别,远场语音识别,语音识别,一句话识别,实时语音识别,录音文件识别,语音合成,实时语音识别,长语音识别,语音识别,语音合成,波束形成,声源定位,去混响,降噪,回声消除,分布式拾音,语音识别,语音唤醒,语音合成,声纹识别,智能语音服务,语音合成,短语音识别,实时语音识别,语音理解与交互,离线唤醒词识别,语音识别,一句话识别,实时语音识别,录音文件识别,电话语音识别,语音唤醒,离线语音识别,离线命令词识别,远场语音识别,语音合成,通用语音合成,个性化语音合成,语音技术,短语音识别,实时语音识别,音频文件转写,在线语音合成,离线语音合成,语音自训练平台,语音交互,语音合成,语音识别,一句话识别,实时短语音识别,语音合成,语音唤醒,本地语音合成,语音翻译,语音转文本,短语音听写,长语音转写,实时语音转写,语音内容审核,会议超极本,语音交互技术,语音识别,语义理解,语音合成,音频转写,音视频类产品,语音通知/验证码,订单小号,拨打验证,点击拨号,数据语音,统一认证,语音会议,企业视频彩铃,语音识别,语音文件转录,实时语音识别,一句话语音识别,语音合成,通用语音合成,个性化语音合成,语音评测,通用语音评测,中英文造句评测,在线语音识别,语音识别,语音唤醒,语音合成,语音合成,语音识别,语音听写,语音转写,短语音转写(同步),语音识别,语音 情感 识别

十、数据挖掘AI硬件

算法类型:包括二分类、多分类和回归,精准营销,表格数据预测,销量预测,交通流量预测,时序预测,大数据,无,机器学习使用手册,机器学习API文档,大数据处理,大数据传输,数据工厂,大数据分析,数据仓库,数据采集与标注,数据采集服务,数据标注服务,AI开发平台,全功能AI开发平台BML,零门槛AI开发平台EasyDL,AI硬件与平台,GPU云服务器,机器人平台,度目视频分析盒子,度目AI镜头模组,度目人脸应用套件,度目人脸抓拍机,人脸识别摄像机,昆仑AI加速卡,智能预测,购车指数,数据科学虚拟机,平台效率,云与AI,抗DDoS,天盾,网站漏洞扫描,网页防篡改,入侵检测防护,弹性云服务器,对象存储服务,云专线(CDA,AI计算机平台—360net深度学习基础模型,AI算法训练适配主流AI框架

十一、其他

内容审核,智能鉴黄,特定人物识别,通用图片审核,文本智能审核,广告检测,Logo检测,商品理解,拍照购,商品图片搜索,通用商品识别,疫情物资识别,酒标识别,细分市场划分,品牌竞争力分析,老品升级,新品定制,商品竞争力分析,商品销量预测,商品营销,用户评论占比预测,商品命名实体识别,商品颜色识别,强化学习,智能地图引擎,内容审核,智能鉴黄,特定人物识别,通用图片审核,文本智能审核,广告检测,Logo检测商品理解,拍照购,商品图片搜索,通用商品识别,疫情物资识别,酒标识别,细分市场划分,品牌竞争力分析,老品升级,新品定制,商品竞争力分析,商品销量预测,商品营销,用户评论占比预测,商品命名实体识别,商品颜色识别,个性化与推荐系统,推荐系统,舆情分析,舆情标签,智慧教育,智能语音评测,拍照搜题,题目识别切分,整页拍搜批改,作文批改,学业大数据平台,文档校审系统,会议同传系统,文档翻译系统,视频翻译系统,教育学习,口语评测,朗读听书,增强现实,3D肢体关键点SDK,美颜滤镜SDK,短视频SDK,基础服务,私有云部署,多模态交互,多模态 情感 分析,多模态意图解析,多模态融合,多模态语义,内容审查器,Microsoft基因组学,医学人工智能开放平台,数据查验接口,身份验证(公安简项),银行卡验证,发票查验,设备接入服务Web/H5直播消息设备托管异常巡检电话提醒,音视频,视频监控服务云广播服务云存储云录制,司乘体验,智能地图引擎,消息类产品,视频短信,短信通知/验证码,企业挂机彩信,来去电身份提示,企业固话彩印,模板闪信,异网短信,内容生产,试卷拆录解决方案,教学管理,教学质量评估解决方案,教学异常行为监测,授课质量分析解决方案,路况识别,人车检测,视觉SLAM,高精地图,免费SDK,智能诊后随访管理,用药管家,智能预问诊,智能导诊,智能自诊,智能问药,智能问答,裁判文书近义词计算,法条推荐,案由预测,

⑤ 求解:图论中常见的最短路径算法有几种都是什么

主要是有三种、、

第一种是最直接的贪心dijkstra算法、、可以利用堆数据结构进行优化、、缺点就是不能求有负权的最短路与判断负环、、

第二种是bellman-ford算法、、根据松弛操作的性质是可以来判断负环的、、时间复杂度是O(nm)的、、

第三种是SPFA算法、、把他单独拿出来作为一种算法并不是非常好的、、他的实质应该是上面的bellman-ford算法的队列优化时间复杂度更低、O(KE)、K的值约等于2、、

热点内容
存储过程参数空值 发布:2025-04-06 08:59:59 浏览:873
垃圾车压缩式垃圾车 发布:2025-04-06 08:55:00 浏览:205
如何给苹果iphone手机设置密码 发布:2025-04-06 08:49:17 浏览:810
安卓苹果王者荣耀数据转移在哪里 发布:2025-04-06 08:47:34 浏览:892
linux强制退出 发布:2025-04-06 08:47:33 浏览:664
python验证码切割 发布:2025-04-06 08:47:30 浏览:989
校园vlog脚本模板 发布:2025-04-06 08:45:59 浏览:463
无法访问别人的共享 发布:2025-04-06 08:41:31 浏览:401
我的世界服务器生存地址 发布:2025-04-06 08:20:25 浏览:724
des算法缺点 发布:2025-04-06 08:13:51 浏览:573