算法F检验
① 系统辨识与建模 辨识方法有哪些
主要内容包括:线性系统的辨识,多变量线性系统的辨识,线性系统的非参数表示和辨识,非线性系统的辨识,时间序列建模,房室模型(多用于医学、生物工程中)的辨识,神经网络模型的辨识,模糊系统的建模与辨识,遗传算法及其在辨识中的应用,辨识的实施等。各种方法都给出具体的计算步骤或框图,并结合实例或仿真例子给予说明,尽量使读者易学会用。 本书为天津市高校“十五”规划教材,可作为高等学校自动化、系统工程、经济管理、应用数学等专业的高年级本科生和研究生的教材或参考书,也可作为有关科技工作者、工程技术和管理人员的参考书。 图书目录第1章引论(1)1.1建模与系统辨识概述1.1.1系统辨识研究的对象1.1.2系统辨识1.1.3系统辨识的目的1.1.4辨识中的先验知识1.1.5先验知识的获得1.1.6系统辨识的基本步骤1.2数学模型1.2.1概述1.2.2线性系统的4种数学模型1.3本书的指导思想和布局第2章线性静态模型的辨识(12)2.1问题的提出2.2最小二乘法(ls)2.2.1最小二乘估计2.2.2最小二乘估计的性质2.2.3逐步回归方法2.3病态方程的求解方法2.3.1病态对参数估计的影响2.3.2条件数2.3.3病态方程的求解方法2.4模型参数的最大似然估计(ml)2.4.1最大似然准则2.4.2最大似然估计243松弛算法习题第3章离散线性动态模型的最小二乘估计(27)3.1问题的提法及一次完成最小二乘估计3.2最小二乘估计的递推算法(rls)3.2.1递推最小二乘法3.2.2初始值的选择3.2.3计算步骤及举例3.3时变系统的实时算法3.3.1渐消记忆(指数窗)的递推算法3.3.2限定记忆(固定窗)的递推算法3.3.3变遗忘因子的实时算法3.4递推平方根算法3.5最大似然估计(ml)习题第4章相关(有色)噪声情形的辨识算法(42)4.1辅助变量法4.2增广最小二乘法(els)4.2.1增广最小二乘法4.2.2改进的增广最小二乘法4.3最大似然法(ml)44闭环系统的辨识4.4.1问题的提出4.4.2可辨识性443闭环条件下的最小二乘估计习题第5章模型阶的辨识5.1单变量线性系统阶的辨识5.1.1损失函数检验法5.1.2f检验法5.1.3赤池信息准则(aic准则)5.2阶与参数同时辨识的递推算法5.2.1辨识阶次的基本思想和方法5.2.2阶的递推辨识算法5.2.3几点说明5.3仿真研究5.3.1辨识方法的仿真研究5.3.2对模型适用性的仿真研究5.3.3控制系统设计中的计算机仿真研究习题*第6章多变量线性系统的辨识6.1不变量、适宜选择路线及规范形6.1.1代数等价系统6.1.2适宜选择路线与不变量6.1.3适宜选择路线与规范形6.2输入/输出方程6.2.1输入/输出方程一般形式6.2.2pcf规范形对应的输入/输出方程6.3pcf规范形的辨识6.3.1结构确定及参数辨识6.3.2*和*的实现算法习题第7章线性系统的非参数表示和辨识7.1线性系统的非参数表示7.1.1脉冲响应函数7.1.2markov参数(hankel模型)7.2估计脉冲响应函数的相关方法7.2.1相关方法的基本原理7.2.2伪随机二位式信号(m序列)7.2.3用m序列做输入信号时脉冲响应函数的估计7.2.4估计h(t)的具体步骤与实施习题第8章非线性系统辨识8.1引言8.2单纯形搜索法8.2.1问题的提法8.2.2单纯形搜索法8.3迭代算法的基本原理8.3.1迭代算法的一般步骤8.3.2可接受方向8.4牛顿—拉夫森算法8.5麦夸特方法*8.6数据处理的分组方法
② 逻辑回归算法原理是什么
逻辑回归就是这样的一个过程:面对一个回归或者分类问题,建立代价函数,然后通过优化方法迭代求解出最优的模型参数,测试验证这个求解的模型的好坏。
Logistic回归虽然名字里带“回归”,但是它实际上是一种分类方法,主要用于两分类问题(即输出只有两种,分别代表两个类别)。回归模型中,y是一个定性变量,比如y=0或1,logistic方法主要应用于研究某些事件发生的概率。
Logistic回归模型的适用条件
1、因变量为二分类的分类变量或某事件的发生率,并且是数值型变量。但是需要注意,重复计数现象指标不适用于Logistic回归。
2、残差和因变量都要服从二项分布。二项分布对应的是分类变量,所以不是正态分布,进而不是用最小二乘法,而是最大似然法来解决方程估计和检验问题。
3、自变量和Logistic概率是线性关系。
以上内容参考:网络-logistic回归
③ C语言算法速查手册的目录
第1章绪论1
1.1程序设计语言概述1
1.1.1机器语言1
1.1.2汇编语言2
1.1.3高级语言2
1.1.4C语言3
1.2C语言的优点和缺点4
1.2.1C语言的优点4
1.2.2C语言的缺点6
1.3算法概述7
1.3.1算法的基本特征7
1.3.2算法的复杂度8
1.3.3算法的准确性10
1.3.4算法的稳定性14
第2章复数运算18
2.1复数的四则运算18
2.1.1[算法1]复数乘法18
2.1.2[算法2]复数除法20
2.1.3【实例5】 复数的四则运算22
2.2复数的常用函数运算23
2.2.1[算法3]复数的乘幂23
2.2.2[算法4]复数的n次方根25
2.2.3[算法5]复数指数27
2.2.4[算法6]复数对数29
2.2.5[算法7]复数正弦30
2.2.6[算法8]复数余弦32
2.2.7【实例6】 复数的函数运算34
第3章多项式计算37
3.1多项式的表示方法37
3.1.1系数表示法37
3.1.2点表示法38
3.1.3[算法9]系数表示转化为点表示38
3.1.4[算法10]点表示转化为系数表示42
3.1.5【实例7】系数表示法与点表示法的转化46
3.2多项式运算47
3.2.1[算法11]复系数多项式相乘47
3.2.2[算法12]实系数多项式相乘50
3.2.3[算法13]复系数多项式相除52
3.2.4[算法14]实系数多项式相除54
3.2.5【实例8】复系数多项式的乘除法56
3.2.6【实例9】实系数多项式的乘除法57
3.3多项式的求值59
3.3.1[算法15]一元多项式求值59
3.3.2[算法16]一元多项式多组求值60
3.3.3[算法17]二元多项式求值63
3.3.4【实例10】一元多项式求值65
3.3.5【实例11】二元多项式求值66
第4章矩阵计算68
4.1矩阵相乘68
4.1.1[算法18]实矩阵相乘68
4.1.2[算法19]复矩阵相乘70
4.1.3【实例12】 实矩阵与复矩阵的乘法72
4.2矩阵的秩与行列式值73
4.2.1[算法20]求矩阵的秩73
4.2.2[算法21]求一般矩阵的行列式值76
4.2.3[算法22]求对称正定矩阵的行列式值80
4.2.4【实例13】 求矩阵的秩和行列式值82
4.3矩阵求逆84
4.3.1[算法23]求一般复矩阵的逆84
4.3.2[算法24]求对称正定矩阵的逆90
4.3.3[算法25]求托伯利兹矩阵逆的Trench方法92
4.3.4【实例14】 验证矩阵求逆算法97
4.3.5【实例15】 验证T矩阵求逆算法99
4.4矩阵分解与相似变换102
4.4.1[算法26]实对称矩阵的LDL分解102
4.4.2[算法27]对称正定实矩阵的Cholesky分解104
4.4.3[算法28]一般实矩阵的全选主元LU分解107
4.4.4[算法29]一般实矩阵的QR分解112
4.4.5[算法30]对称实矩阵相似变换为对称三对角阵116
4.4.6[算法31]一般实矩阵相似变换为上Hessen-Burg矩阵121
4.4.7【实例16】 对一般实矩阵进行QR分解126
4.4.8【实例17】 对称矩阵的相似变换127
4.4.9【实例18】 一般实矩阵相似变换129
4.5矩阵特征值的计算130
4.5.1[算法32]求上Hessen-Burg矩阵全部特征值的QR方法130
4.5.2[算法33]求对称三对角阵的全部特征值137
4.5.3[算法34]求对称矩阵特征值的雅可比法143
4.5.4[算法35]求对称矩阵特征值的雅可比过关法147
4.5.5【实例19】 求上Hessen-Burg矩阵特征值151
4.5.6【实例20】 分别用两种雅克比法求对称矩阵特征值152
第5章线性代数方程组的求解154
5.1高斯消去法154
5.1.1[算法36]求解复系数方程组的全选主元高斯消去法155
5.1.2[算法37]求解实系数方程组的全选主元高斯消去法160
5.1.3[算法38]求解复系数方程组的全选主元高斯-约当消去法163
5.1.4[算法39]求解实系数方程组的全选主元高斯-约当消去法168
5.1.5[算法40]求解大型稀疏系数矩阵方程组的高斯-约当消去法171
5.1.6[算法41]求解三对角线方程组的追赶法174
5.1.7[算法42]求解带型方程组的方法176
5.1.8【实例21】 解线性实系数方程组179
5.1.9【实例22】 解线性复系数方程组180
5.1.10【实例23】 解三对角线方程组182
5.2矩阵分解法184
5.2.1[算法43]求解对称方程组的LDL分解法184
5.2.2[算法44]求解对称正定方程组的Cholesky分解法186
5.2.3[算法45]求解线性最小二乘问题的QR分解法188
5.2.4【实例24】 求解对称正定方程组191
5.2.5【实例25】 求解线性最小二乘问题192
5.3迭代方法193
5.3.1[算法46]病态方程组的求解193
5.3.2[算法47]雅克比迭代法197
5.3.3[算法48]高斯-塞德尔迭代法200
5.3.4[算法49]超松弛方法203
5.3.5[算法50]求解对称正定方程组的共轭梯度方法205
5.3.6[算法51]求解托伯利兹方程组的列文逊方法209
5.3.7【实例26】 解病态方程组214
5.3.8【实例27】 用迭代法解方程组215
5.3.9【实例28】 求解托伯利兹方程组217
第6章非线性方程与方程组的求解219
6.1非线性方程求根的基本过程219
6.1.1确定非线性方程实根的初始近似值或根的所在区间219
6.1.2求非线性方程根的精确解221
6.2求非线性方程一个实根的方法221
6.2.1[算法52]对分法221
6.2.2[算法53]牛顿法223
6.2.3[算法54]插值法226
6.2.4[算法55]埃特金迭代法229
6.2.5【实例29】 用对分法求非线性方程组的实根232
6.2.6【实例30】 用牛顿法求非线性方程组的实根233
6.2.7【实例31】 用插值法求非线性方程组的实根235
6.2.8【实例32】 用埃特金迭代法求非线性方程组的实根237
6.3求实系数多项式方程全部根的方法238
6.3.1[算法56]QR方法238
6.3.2【实例33】用QR方法求解多项式的全部根240
6.4求非线性方程组一组实根的方法241
6.4.1[算法57]梯度法241
6.4.2[算法58]拟牛顿法244
6.4.3【实例34】 用梯度法计算非线性方程组的一组实根250
6.4.4【实例35】 用拟牛顿法计算非线性方程组的一组实根252
第7章代数插值法254
7.1拉格朗日插值法254
7.1.1[算法59]线性插值255
7.1.2[算法60]二次抛物线插值256
7.1.3[算法61]全区间插值259
7.1.4【实例36】 拉格朗日插值262
7.2埃尔米特插值263
7.2.1[算法62]埃尔米特不等距插值263
7.2.2[算法63]埃尔米特等距插值267
7.2.3【实例37】 埃尔米特插值法270
7.3埃特金逐步插值271
7.3.1[算法64]埃特金不等距插值272
7.3.2[算法65]埃特金等距插值275
7.3.3【实例38】 埃特金插值278
7.4光滑插值279
7.4.1[算法66]光滑不等距插值279
7.4.2[算法67]光滑等距插值283
7.4.3【实例39】 光滑插值286
7.5三次样条插值287
7.5.1[算法68]第一类边界条件的三次样条函数插值287
7.5.2[算法69]第二类边界条件的三次样条函数插值292
7.5.3[算法70]第三类边界条件的三次样条函数插值296
7.5.4【实例40】 样条插值法301
7.6连分式插值303
7.6.1[算法71]连分式插值304
7.6.2【实例41】 验证连分式插值的函数308
第8章数值积分法309
8.1变步长求积法310
8.1.1[算法72]变步长梯形求积法310
8.1.2[算法73]自适应梯形求积法313
8.1.3[算法74]变步长辛卜生求积法316
8.1.4[算法75]变步长辛卜生二重积分方法318
8.1.5[算法76]龙贝格积分322
8.1.6【实例42】 变步长积分法进行一重积分325
8.1.7【实例43】 变步长辛卜生积分法进行二重积分326
8.2高斯求积法328
8.2.1[算法77]勒让德-高斯求积法328
8.2.2[算法78]切比雪夫求积法331
8.2.3[算法79]拉盖尔-高斯求积法334
8.2.4[算法80]埃尔米特-高斯求积法336
8.2.5[算法81]自适应高斯求积方法337
8.2.6【实例44】 有限区间高斯求积法342
8.2.7【实例45】 半无限区间内高斯求积法343
8.2.8【实例46】 无限区间内高斯求积法345
8.3连分式法346
8.3.1[算法82]计算一重积分的连分式方法346
8.3.2[算法83]计算二重积分的连分式方法350
8.3.3【实例47】 连分式法进行一重积分354
8.3.4【实例48】 连分式法进行二重积分355
8.4蒙特卡洛法356
8.4.1[算法84]蒙特卡洛法进行一重积分356
8.4.2[算法85]蒙特卡洛法进行二重积分358
8.4.3【实例49】 一重积分的蒙特卡洛法360
8.4.4【实例50】 二重积分的蒙特卡洛法361
第9章常微分方程(组)初值问题的求解363
9.1欧拉方法364
9.1.1[算法86]定步长欧拉方法364
9.1.2[算法87]变步长欧拉方法366
9.1.3[算法88]改进的欧拉方法370
9.1.4【实例51】 欧拉方法求常微分方程数值解372
9.2龙格-库塔方法376
9.2.1[算法89]定步长龙格-库塔方法376
9.2.2[算法90]变步长龙格-库塔方法379
9.2.3[算法91]变步长基尔方法383
9.2.4【实例52】 龙格-库塔方法求常微分方程的初值问题386
9.3线性多步法390
9.3.1[算法92]阿当姆斯预报校正法390
9.3.2[算法93]哈明方法394
9.3.3[算法94]全区间积分的双边法399
9.3.4【实例53】 线性多步法求常微分方程组初值问题401
第10章拟合与逼近405
10.1一元多项式拟合405
10.1.1[算法95]最小二乘拟合405
10.1.2[算法96]最佳一致逼近的里米兹方法412
10.1.3【实例54】 一元多项式拟合417
10.2矩形区域曲面拟合419
10.2.1[算法97]矩形区域最小二乘曲面拟合419
10.2.2【实例55】 二元多项式拟合428
第11章特殊函数430
11.1连分式级数和指数积分430
11.1.1[算法98]连分式级数求值430
11.1.2[算法99]指数积分433
11.1.3【实例56】 连分式级数求值436
11.1.4【实例57】 指数积分求值438
11.2伽马函数439
11.2.1[算法100]伽马函数439
11.2.2[算法101]贝塔函数441
11.2.3[算法102]阶乘442
11.2.4【实例58】伽马函数和贝塔函数求值443
11.2.5【实例59】阶乘求值444
11.3不完全伽马函数445
11.3.1[算法103]不完全伽马函数445
11.3.2[算法104]误差函数448
11.3.3[算法105]卡方分布函数450
11.3.4【实例60】不完全伽马函数求值451
11.3.5【实例61】误差函数求值452
11.3.6【实例62】卡方分布函数求值453
11.4不完全贝塔函数454
11.4.1[算法106]不完全贝塔函数454
11.4.2[算法107]学生分布函数457
11.4.3[算法108]累积二项式分布函数458
11.4.4【实例63】不完全贝塔函数求值459
11.5贝塞尔函数461
11.5.1[算法109]第一类整数阶贝塞尔函数461
11.5.2[算法110]第二类整数阶贝塞尔函数466
11.5.3[算法111]变型第一类整数阶贝塞尔函数469
11.5.4[算法112]变型第二类整数阶贝塞尔函数473
11.5.5【实例64】贝塞尔函数求值476
11.5.6【实例65】变型贝塞尔函数求值477
11.6Carlson椭圆积分479
11.6.1[算法113]第一类椭圆积分479
11.6.2[算法114]第一类椭圆积分的退化形式481
11.6.3[算法115]第二类椭圆积分483
11.6.4[算法116]第三类椭圆积分486
11.6.5【实例66】第一类勒让德椭圆函数积分求值490
11.6.6【实例67】第二类勒让德椭圆函数积分求值492
第12章极值问题494
12.1一维极值求解方法494
12.1.1[算法117]确定极小值点所在的区间494
12.1.2[算法118]一维黄金分割搜索499
12.1.3[算法119]一维Brent方法502
12.1.4[算法120]使用一阶导数的Brent方法506
12.1.5【实例68】使用黄金分割搜索法求极值511
12.1.6【实例69】使用Brent法求极值513
12.1.7【实例70】使用带导数的Brent法求极值515
12.2多元函数求极值517
12.2.1[算法121]不需要导数的一维搜索517
12.2.2[算法122]需要导数的一维搜索519
12.2.3[算法123]Powell方法522
12.2.4[算法124]共轭梯度法525
12.2.5[算法125]准牛顿法531
12.2.6【实例71】验证不使用导数的一维搜索536
12.2.7【实例72】用Powell算法求极值537
12.2.8【实例73】用共轭梯度法求极值539
12.2.9【实例74】用准牛顿法求极值540
12.3单纯形法542
12.3.1[算法126]求无约束条件下n维极值的单纯形法542
12.3.2[算法127]求有约束条件下n维极值的单纯形法548
12.3.3[算法128]解线性规划问题的单纯形法556
12.3.4【实例75】用单纯形法求无约束条件下N维的极值568
12.3.5【实例76】用单纯形法求有约束条件下N维的极值569
12.3.6【实例77】求解线性规划问题571
第13章随机数产生与统计描述574
13.1均匀分布随机序列574
13.1.1[算法129]产生0到1之间均匀分布的一个随机数574
13.1.2[算法130]产生0到1之间均匀分布的随机数序列576
13.1.3[算法131]产生任意区间内均匀分布的一个随机整数577
13.1.4[算法132]产生任意区间内均匀分布的随机整数序列578
13.1.5【实例78】产生0到1之间均匀分布的随机数序列580
13.1.6【实例79】产生任意区间内均匀分布的随机整数序列581
13.2正态分布随机序列582
13.2.1[算法133]产生任意均值与方差的正态分布的一个随机数582
13.2.2[算法134]产生任意均值与方差的正态分布的随机数序列585
13.2.3【实例80】产生任意均值与方差的正态分布的一个随机数587
13.2.4【实例81】产生任意均值与方差的正态分布的随机数序列588
13.3统计描述589
13.3.1[算法135]分布的矩589
13.3.2[算法136]方差相同时的t分布检验591
13.3.3[算法137]方差不同时的t分布检验594
13.3.4[算法138]方差的F检验596
13.3.5[算法139]卡方检验599
13.3.6【实例82】计算随机样本的矩601
13.3.7【实例83】t分布检验602
13.3.8【实例84】F分布检验605
13.3.9【实例85】检验卡方检验的算法607
第14章查找609
14.1基本查找609
14.1.1[算法140]有序数组的二分查找609
14.1.2[算法141]无序数组同时查找最大和最小的元素611
14.1.3[算法142]无序数组查找第M小的元素613
14.1.4【实例86】基本查找615
14.2结构体和磁盘文件的查找617
14.2.1[算法143]无序结构体数组的顺序查找617
14.2.2[算法144]磁盘文件中记录的顺序查找618
14.2.3【实例87】结构体数组和文件中的查找619
14.3哈希查找622
14.3.1[算法145]字符串哈希函数622
14.3.2[算法146]哈希函数626
14.3.3[算法147]向哈希表中插入元素628
14.3.4[算法148]在哈希表中查找元素629
14.3.5[算法149]在哈希表中删除元素631
14.3.6【实例88】构造哈希表并进行查找632
第15章排序636
15.1插入排序636
15.1.1[算法150]直接插入排序636
15.1.2[算法151]希尔排序637
15.1.3【实例89】插入排序639
15.2交换排序641
15.2.1[算法152]气泡排序641
15.2.2[算法153]快速排序642
15.2.3【实例90】交换排序644
15.3选择排序646
15.3.1[算法154]直接选择排序646
15.3.2[算法155]堆排序647
15.3.3【实例91】选择排序650
15.4线性时间排序651
15.4.1[算法156]计数排序651
15.4.2[算法157]基数排序653
15.4.3【实例92】线性时间排序656
15.5归并排序657
15.5.1[算法158]二路归并排序658
15.5.2【实例93】二路归并排序660
第16章数学变换与滤波662
16.1快速傅里叶变换662
16.1.1[算法159]复数据快速傅里叶变换662
16.1.2[算法160]复数据快速傅里叶逆变换666
16.1.3[算法161]实数据快速傅里叶变换669
16.1.4【实例94】验证傅里叶变换的函数671
16.2其他常用变换674
16.2.1[算法162]快速沃尔什变换674
16.2.2[算法163]快速哈达玛变换678
16.2.3[算法164]快速余弦变换682
16.2.4【实例95】验证沃尔什变换和哈达玛的函数684
16.2.5【实例96】验证离散余弦变换的函数687
16.3平滑和滤波688
16.3.1[算法165]五点三次平滑689
16.3.2[算法166]α-β-γ滤波690
16.3.3【实例97】验证五点三次平滑692
16.3.4【实例98】验证α-β-γ滤波算法693