linuxiops
㈠ 如何测试云硬盘
问题
UOS公有云开放以来,一些用户反应用dd命令测试出来的1TB云硬盘的吞吐率(MBPS)只有128MB/s,而不是我们SLA保证的170MB /s ,这是为什么?下面我会简单介绍如何测试硬盘,RAID,SAN,SSD,云硬盘等,然后再来回答上面的问题。
测试前提
我们在进行测试时,都会分清楚:
测试对象:要区分硬盘、SSD、RAID、SAN、云硬盘等,因为它们有不同的特点
测试指标:IOPS和MBPS(吞吐率),下面会具体阐述
测试工具:linux下常用Fio、dd工具, Windows下常用IOMeter,
测试参数: IO大小,寻址空间,队列深度,读写模式,随机/顺序模式
测试方法:也就是测试步骤。
测试是为了对比,所以需要定性和定量。在宣布自己的测试结果时,需要说明这次测试的工具、参数、方法,以便于比较。
存储系统模型
为了更好的测试,我们需要先了解存储系统,块存储系统本质是一个排队模型,我们可以拿银行作为比喻。还记得你去银行办事时的流程吗?
去前台取单号
等待排在你之前的人办完业务
轮到你去某个柜台
柜台职员帮你办完手续1
柜台职员帮你办完手续2
柜台职员帮你办完手续3
办完业务,从柜台离开
如何评估银行的效率呢:
服务时间 = 手续1 + 手续2 + 手续3
响应时间 = 服务时间 + 等待时间
性能 = 单位时间内处理业务数量
那银行如何提高效率呢:
增加柜台数
降低服务时间
因此,排队系统或存储系统的优化方法是
增加并行度
降低服务时间
硬盘测试
硬盘原理
我们应该如何测试SATA/SAS硬盘呢?首先需要了解磁盘的构造,并了解磁盘的工作方式:
每个硬盘都有一个磁头(相当于银行的柜台),硬盘的工作方式是:
收到IO请求,得到地址和数据大小
移动磁头(寻址)
找到相应的磁道(寻址)
读取数据
传输数据
则磁盘的随机IO服务时间:
服务时间 = 寻道时间 + 旋转时间 + 传输时间
对于10000转速的SATA硬盘来说,一般寻道时间是7 ms,旋转时间是3 ms, 64KB的传输时间是 0.8 ms, 则SATA硬盘每秒可以进行随机IO操作是 1000/(7 + 3 + 0.8) = 93,所以我们估算SATA硬盘64KB随机写的IOPS是93。一般的硬盘厂商都会标明顺序读写的MBPS。
我们在列出IOPS时,需要说明IO大小,寻址空间,读写模式,顺序/随机,队列深度。我们一般常用的IO大小是4KB,这是因为文件系统常用的块大小是4KB。
使用dd测试硬盘
虽然硬盘的性能是可以估算出来的,但是怎么才能让应用获得这些性能呢?对于测试工具来说,就是如何得到IOPS和MBPS峰值。我们先用dd测试一下SATA硬盘的MBPS(吞吐量)。
#dd if=/dev/zero of=/dev/sdd bs=4k count=300000 oflag=direct
记录了300000+0 的读入 记录了300000+0 的写出 1228800000字节(1.2 GB)已复制,17.958 秒,68.4 MB/秒
#iostat -x sdd 5 10
...
Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util
sdd 0.00 0.00 0.00 16794.80 0.00 134358.40 8.00 0.79 0.05 0.05 78.82
...
为什么这块硬盘的MBPS只有68MB/s? 这是因为磁盘利用率是78%,没有到达95%以上,还有部分时间是空闲的。当dd在前一个IO响应之后,在准备发起下一个IO时,SATA硬盘是空闲的。那么如何才能提高利用率,让磁盘不空闲呢?只有一个办法,那就是增加硬盘的队列深度。相对于CPU来说,硬盘属于慢速设备,所有操作系统会有给每个硬盘分配一个专门的队列用于缓冲IO请求。
队列深度
什么是磁盘的队列深度?
在某个时刻,有N个inflight的IO请求,包括在队列中的IO请求、磁盘正在处理的IO请求。N就是队列深度。
加大硬盘队列深度就是让硬盘不断工作,减少硬盘的空闲时间。
加大队列深度 -> 提高利用率 -> 获得IOPS和MBPS峰值 -> 注意响应时间在可接受的范围内
增加队列深度的办法有很多
使用异步IO,同时发起多个IO请求,相当于队列中有多个IO请求
多线程发起同步IO请求,相当于队列中有多个IO请求
增大应用IO大小,到达底层之后,会变成多个IO请求,相当于队列中有多个IO请求 队列深度增加了。
队列深度增加了,IO在队列的等待时间也会增加,导致IO响应时间变大,这需要权衡。让我们通过增加IO大小来增加dd的队列深度,看有没有效果:
dd if=/dev/zero of=/dev/sdd bs=2M count=1000 oflag=direct
记录了1000+0 的读入 记录了1000+0 的写出 2097152000字节(2.1 GB)已复制,10.6663 秒,197 MB/秒
Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util
sdd 0.00 0.00 0.00 380.60 0.00 389734.40 1024.00 2.39 6.28 2.56 97.42
可以看到2MB的IO到达底层之后,会变成多个512KB的IO,平均队列长度为2.39,这个硬盘的利用率是97%,MBPS达到了197MB/s。(为什么会变成512KB的IO,你可以去使用Google去查一下内核参数 max_sectors_kb的意义和使用方法 )
也就是说增加队列深度,是可以测试出硬盘的峰值的。
使用fio测试硬盘
现在,我们来测试下SATA硬盘的4KB随机写的IOPS。因为我的环境是Linux,所以我使用FIO来测试。
$fio -ioengine=lio -bs=4k -direct=1 -thread -rw=randwrite -size=1000G -filename=/dev/vdb \
-name="EBS 4K randwrite test" -iodepth=64 -runtime=60
简单介绍fio的参数
ioengine: 负载引擎,我们一般使用lio,发起异步IO请求。
bs: IO大小
direct: 直写,绕过操作系统Cache。因为我们测试的是硬盘,而不是操作系统的Cache,所以设置为1。
rw: 读写模式,有顺序写write、顺序读read、随机写randwrite、随机读randread等。
size: 寻址空间,IO会落在 [0, size)这个区间的硬盘空间上。这是一个可以影响IOPS的参数。一般设置为硬盘的大小。
filename: 测试对象
iodepth: 队列深度,只有使用lio时才有意义。这是一个可以影响IOPS的参数。
runtime: 测试时长
下面我们做两次测试,分别 iodepth = 1和iodepth = 4的情况。下面是iodepth = 1的测试结果。
上图中蓝色方框里面的是测出的IOPS 230, 绿色方框里面是每个IO请求的平均响应时间,大约是4.3ms。黄色方框表示95%的IO请求的响应时间是小于等于 9.920 ms。橙色方框表示该硬盘的利用率已经达到了98.58%。
下面是 iodepth = 4 的测试:
我们发现这次测试的IOPS没有提高,反而IO平均响应时间变大了,是17ms。
为什么这里提高队列深度没有作用呢,原因当队列深度为1时,硬盘的利用率已经达到了98%,说明硬盘已经没有多少空闲时间可以压榨了。而且响应时间为 4ms。 对于SATA硬盘,当增加队列深度时,并不会增加IOPS,只会增加响应时间。这是因为硬盘只有一个磁头,并行度是1, 所以当IO请求队列变长时,每个IO请求的等待时间都会变长,导致响应时间也变长。
这是以前用IOMeter测试一块SATA硬盘的4K随机写性能,可以看到IOPS不会随着队列深度的增加而增加,反而是平均响应时间在倍增。
队列深度 IOPS 平均响应时间
1 332.931525 3.002217
2 333.985074 5.986528
4 332.594653 12.025060
8 336.568012 23.766359
16 329.785606 48.513477
32 332.054590 96.353934
64 331.041063 193.200815
128 331.309109 385.163111
256 327.442963 774.401781
寻址空间对IOPS的影响
我们继续测试SATA硬盘,前面我们提到寻址空间参数也会对IOPS产生影响,下面我们就测试当size=1GB时的情况。
我们发现,当设置size=1GB时,IOPS会显着提高到568,IO平均响应时间会降到7ms(队列深度为4)。这是因为当寻址空间为1GB时,磁头需要移动的距离变小了,每次IO请求的服务时间就降低了,这就是空间局部性原理。假如我们测试的RAID卡或者是磁盘阵列(SAN),它们可能会用Cache把这1GB的数据全部缓存,极大降低了IO请求的服务时间(内存的写操作比硬盘的写操作快很1000倍)。所以设置寻址空间为1GB的意义不大,因为我们是要测试硬盘的全盘性能,而不是Cache的性能。
硬盘优化
硬盘厂商提高硬盘性能的方法主要是降低服务时间(延迟):
提高转速(降低旋转时间和传输时间)
增加Cache(降低写延迟,但不会提高IOPS)
提高单磁道密度(变相提高传输时间)
RAID测试
RAID0/RAID5/RAID6的多块磁盘可以同时服务,其实就是提高并行度,这样极大提高了性能(相当于银行有多个柜台)。
以前测试过12块RAID0,100GB的寻址空间,4KB随机写,逐步提高队列深度,IOPS会提高,因为它有12块磁盘(12个磁头同时工作),并行度是12。
队列深度 IOPS 平均响应时间
1 1215.995842 0.820917
2 4657.061317 0.428420
4 5369.326970 0.744060
8 5377.387303 1.486629
16 5487.911660 2.914048
32 5470.972663 5.846616
64 5520.234015 11.585251
128 5542.739816 23.085843
256 5513.994611 46.401606
RAID卡厂商优化的方法也是降低服务时间:
使用大内存Cache
使用IO处理器,降低XOR操作的延迟。
使用更大带宽的硬盘接口
SAN测试
对于低端磁盘阵列,使用单机IOmeter就可以测试出它的IOPS和MBPS的峰值,但是对于高端磁盘阵列,就需要多机并行测试才能得到IOPS和MBPS的峰值(IOmeter支持多机并行测试)。下图是纪念照。
磁盘阵列厂商通过以下手段降低服务时间:
更快的存储网络,比如FC和IB,延时更低。
读写Cache。写数据到Cache之后就马上返回,不需要落盘。 而且磁盘阵列有更多的控制器和硬盘,大大提高了并行度。
现在的存储厂商会找SPC帮忙测试自己的磁盘阵列产品(或全闪存阵列), 并给SPC支付费用,这就是赤裸裸的标准垄断。国内也有做存储系统测试的,假如你要测试磁盘阵列,可以找NSTC (广告时间)。
SSD测试
SSD的延时很低,并行度很高(多个nand块同时工作),缺点是寿命和GC造成的响应时间不稳定。
推荐用IOMeter进行测试,使用大队列深度,并进行长时间测试,这样可以测试出SSD的真实性能。
下图是storagereview对一些SSD硬盘做的4KB随机写的长时间测试,可以看出有些SSD硬盘的最大响应时间很不稳定,会飙高到几百ms,这是不可接受的。
云硬盘测试
我们通过两方面来提高云硬盘的性能的:
降低延迟(使用SSD,使用万兆网络,优化代码,减少瓶颈)
提高并行度(数据分片,同时使用整个集群的所有SSD)
在Linux下测试云硬盘
在Linux下,你可以使用FIO来测试
操作系统:Ubuntu 14.04
CPU: 2
Memory: 2GB
云硬盘大小: 1TB(SLA: 6000 IOPS, 170MB/s吞吐率 )
安装fio:
#sudo apt-get install fio
再次介绍一下FIO的测试参数:
ioengine: 负载引擎,我们一般使用lio,发起异步IO请求。
bs: IO大小
direct: 直写,绕过操作系统Cache。因为我们测试的是硬盘,而不是操作系统的Cache,所以设置为1。
rw: 读写模式,有顺序写write、顺序读read、随机写randwrite、随机读randread等。
size: 寻址空间,IO会落在 [0, size)这个区间的硬盘空间上。这是一个可以影响IOPS的参数。一般设置为硬盘的大小。
filename: 测试对象
iodepth: 队列深度,只有使用lio时才有意义。这是一个可以影响IOPS的参数。
runtime: 测试时长
4K随机写测试
我们首先进行4K随机写测试,测试参数和测试结果如下所示:
#fio -ioengine=lio -bs=4k -direct=1 -thread -rw=randwrite -size=100G -filename=/dev/vdb \
-name="EBS 4KB randwrite test" -iodepth=32 -runtime=60
蓝色方框表示IOPS是5900,在正常的误差范围内。绿色方框表示IO请求的平均响应时间为5.42ms, 黄色方框表示95%的IO请求的响应时间是小于等于 6.24 ms的。
4K随机读测试
我们再来进行4K随机读测试,测试参数和测试结果如下所示:
#fio -ioengine=lio -bs=4k -direct=1 -thread -rw=randread -size=100G -filename=/dev/vdb \
-name="EBS 4KB randread test" -iodepth=8 -runtime=60
512KB顺序写测试
最后我们来测试512KB顺序写,看看云硬盘的最大MBPS(吞吐率)是多少,测试参数和测试结果如下所示:
#fio -ioengine=lio -bs=512k -direct=1 -thread -rw=write -size=100G -filename=/dev/vdb \
-name="EBS 512KB seqwrite test" -iodepth=64 -runtime=60
蓝色方框表示MBPS为174226KB/s,约为170MB/s。
使用dd测试吞吐率
其实使用dd命令也可以测试出170MB/s的吞吐率,不过需要设置一下内核参数,详细介绍在 128MB/s VS 170MB/s 章节中。
在Windows下测试云硬盘
在Windows下,我们一般使用IOMeter测试磁盘的性能,IOMeter不仅功能强大,而且很专业,是测试磁盘性能的首选工具。
IOMeter是图形化界面(浓浓的MFC框架的味道),非常方便操作,下面我将使用IOMeter测试我们UOS上1TB的云硬盘。
操作系统:Window Server 2012 R2 64
CPU: 4
Memory: 8GB
云硬盘大小: 1TB
当你把云硬盘挂载到Windows主机之后,你还需要在windows操作系统里面设置硬盘为联机状态。
4K随机写测试
打开IOMeter(你需要先下载),你会看到IOMeter的主界面。在右边,你回发现4个worker(数量和CPU个数相同),因为我们现在只需要1个worker,所以你需要把其他3个worker移除掉。现在让我们来测试硬盘的4K随机写,我们选择好硬盘(Red Hat VirtIO 0001),设置寻址空间(Maximum Disk Size)为50GB(每个硬盘扇区大小是512B,所以一共是 50*1024*1024*1024/512 = 104857600),设置队列深度(Outstanding I/Os)为64。
然后在测试集中选择”4KiB ALIGNED; 0% Read; 100% random(4KB对齐,100%随机写操作)” 测试
然后设置测试时间,我们设置测试时长为60秒,测试之前的预热时间为10秒(IOMeter会发起负载,但是不统计这段时间的结果)。
在最后测试之前,你可以设置查看实时结果,设置实时结果的更新频率是5秒钟。最后点击绿色旗子开始测试。
在测试过程中,我们可以看到实时的测试结果,当前的IOPS是6042,平均IO请求响应时间是10.56ms,这个测试还需要跑38秒,这个测试轮回只有这个测试。
我们可以看到IOMeter自动化程度很高,极大解放测试人员的劳动力,而且可以导出CSV格式的测试结果。
顺序读写测试
我们再按照上面的步骤,进行了顺序读/写测试。下面是测试结果:
IO大小 读写模式 队列深度 MBPS
顺序写吞吐测试 512KB 顺序写 64 164.07 MB/s
顺序读吞吐测试 256KB 顺序读 64 179.32 MB/s
云硬盘的响应时间
当前云硬盘写操作的主要延迟是
网络传输
多副本,写三份(数据强一致性)
三份数据都落盘(数据持久化)之后,才返回
IO处理逻辑
我们当前主要是优化IO处理逻辑,并没有去优化2和3,这是因为我们是把用户数据的安全性放在第一位。
128MB/s VS 170MB/s
回到最开始的问题 “为什么使用dd命令测试云硬盘只有128MB/s”, 这是因为目前云硬盘在处理超大IO请求时的延迟比SSD高(我们会不断进行优化),现在我们有两种方法来获得更高的MBPS:
设置max_sectors_kb为256 (系统默认为512),降低延迟
使用fio来测试,加大队列深度
通过设置max_sectors_kb这个参数,使用dd也可以测出170MB/s的吞吐量
root@ustack:~# cat /sys/block/vdb/queue/max_sectors_kb
512
root@ustack:~# echo "256" > /sys/block/vdb/queue/max_sectors_kb
root@ustack:~#
root@ustack:~# dd if=/dev/zero of=/dev/vdb bs=32M count=40 oflag=direct
40+0 records in
40+0 records out
1342177280 bytes (1.3 GB) copied, 7.51685 s, 179 MB/s
root@ustack:~#
同时查看IO请求的延迟:
root@ustack:~# iostat -x vdb 5 100
...
Device: rrqm/s wrqm/s r/s w/s rkB/s wkB/s avgrq-sz avgqu-sz await r_await w_await svctm %util
vdb 0.00 0.00 0.00 688.00 0.00 176128.00 512.00 54.59 93.47 0.00 93.47 1.40 96.56
下面是使用fio工具的测试结果,也可以得到170MB/s的吞吐率。
不可测试的指标
IOPS和MBPS是用户可以使用工具测试的指标,云硬盘还有一些用户不可测量的指标
数据一致性
数据持久性
数据可用性
这些指标我们只能通过根据系统架构和约束条件计算得到,然后转告给用户。这些指标衡量着公有云厂商的良心,有机会会专门进行介绍。
总结
上面介绍了一下测试工具和一些观点,希望对你有所帮助。
测试需要定性和定量
了解存储模型可以帮助你更好的进行测试
增加队列深度可以有效测试出IOPS和MBPS的峰值
㈡ 如何测试评估windows或linux下数据库的iops
测试方法:
使用方式:
安装FIO:
yum install gcc lio-devel -y
wget http://brick.kernel.dk/snaps/fio-2.0.10.tar.gz
tar -zxvf fio-2.0.10.tar.gz
cd fio-2.0.10
make && make install
测试:
随机读:
fio -filename=/dev/sdb1 -direct=1 -iodepth 1 -thread -rw=randread -ioengine=psync -bs=16k -size=200G -numjobs=10 -runtime=1000 -group_reporting -name=mytest
参数说明:
filename=/dev/sdb1 测试文件名称,通常选择需要测试的盘的data目录。
direct=1 测试过程绕过机器自带的buffer。使测试结果更真实。
rw=randwrite 测试随机写的I/O
rw=randrw 测试随机写和读的I/O
bs=16k 单次io的块文件大小为16k
bsrange=512-2048 同上,提定数据块的大小范围
size=5g 本次的测试文件大小为5g,以每次4k的io进行测试。
numjobs=30 本次的测试线程为30.
runtime=1000 测试时间为1000秒,如果不写则一直将5g文件分4k每次写完为止。
ioengine=psync io引擎使用pync方式
rwmixwrite=30 在混合读写的模式下,写占30%
group_reporting 关于显示结果的,汇总每个进程的信息。
此外
lockmem=1g 只使用1g内存进行测试。
zero_buffers 用0初始化系统buffer。
nrfiles=8 每个进程生成文件的数量。
###############################################
顺序读:
fio -filename=/dev/sdb1 -direct=1 -iodepth 1 -thread -rw=read -ioengine=psync -bs=16k -size=200G -numjobs=30 -runtime=1000 -group_reporting -name=mytest
随机写:
fio -filename=/dev/sdb1 -direct=1 -iodepth 1 -thread -rw=randwrite -ioengine=psync -bs=16k -size=200G -numjobs=30 -runtime=1000 -group_reporting -name=mytest
顺序写:
fio -filename=/dev/sdb1 -direct=1 -iodepth 1 -thread -rw=write -ioengine=psync -bs=16k -size=200G -numjobs=30 -runtime=1000 -group_reporting -name=mytest
混合随机读写:
fio -filename=/dev/sdb1 -direct=1 -iodepth 1 -thread -rw=randrw -rwmixread=70 -ioengine=psync -bs=16k -size=200G -numjobs=30 -runtime=100 -group_reporting -name=mytest -ioscheler=noop
###############################################
实际测试范例:
[root@localhost ~]# fio -filename=/dev/sdb1 -direct=1 -iodepth 1 -thread -rw=randrw -rwmixread=70 -ioengine=psync -bs=16k -size=200G -numjobs=30 -runtime=100 -group_reporting -name=mytest1
mytest1: (g=0): rw=randrw, bs=16K-16K/16K-16K, ioengine=psync, iodepth=1
…
mytest1: (g=0): rw=randrw, bs=16K-16K/16K-16K, ioengine=psync, iodepth=1
fio 2.0.7
Starting 30 threads
Jobs: 1 (f=1): [ [3.5% done] [6935K/3116K /s] [423 /190 iops] [eta 48m:20s] s]
mytest1: (groupid=0, jobs=30): err= 0: pid=23802
read : io=1853.4MB, bw=18967KB/s, iops=1185 , runt=100058msec
clat (usec): min=60 , max=871116 , avg=25227.91, stdev=3.46
lat (usec): min=60 , max=871117 , avg=25228.08, stdev=3.46
clat percentiles (msec):
| 1.00th=[ 3], 5.00th=[ 5], 10.00th=[ 6], 20.00th=[ 8],
| 30.00th=[ 10], 40.00th=[ 12], 50.00th=[ 15], 60.00th=[ 19],
| 70.00th=[ 26], 80.00th=[ 37], 90.00th=[ 57], 95.00th=[ 79],
| 99.00th=[ 151], 99.50th=[ 202], 99.90th=[ 338], 99.95th=[ 383],
| 99.99th=[ 523]
bw (KB/s) : min= 26, max= 1944, per=3.36%, avg=636.84, stdev=189.15
write: io=803600KB, bw=8031.4KB/s, iops=501 , runt=100058msec
clat (usec): min=52 , max=9302 , avg=146.25, stdev=299.17
lat (usec): min=52 , max=9303 , avg=147.19, stdev=299.17
clat percentiles (usec):
| 1.00th=[ 62], 5.00th=[ 65], 10.00th=[ 68], 20.00th=[ 74],
| 30.00th=[ 84], 40.00th=[ 87], 50.00th=[ 89], 60.00th=[ 90],
| 70.00th=[ 92], 80.00th=[ 97], 90.00th=[ 120], 95.00th=[ 370],
| 99.00th=[ 1688], 99.50th=[ 2128], 99.90th=[ 3088], 99.95th=[ 3696],
| 99.99th=[ 5216]
bw (KB/s) : min= 20, max= 1117, per=3.37%, avg=270.27, stdev=133.27
lat (usec) : 100=24.32%, 250=3.83%, 500=0.33%, 750=0.28%, 1000=0.27%
lat (msec) : 2=0.64%, 4=3.08%, 10=20.67%, 20=19.90%, 50=17.91%
lat (msec) : 100=6.87%, 250=1.70%, 500=0.19%, 750=0.01%, 1000=0.01%
cpu : usr=1.70%, sys=2.41%, ctx=5237835, majf=0, minf=6344162
IO depths : 1=100.0%, 2=0.0%, 4=0.0%, 8=0.0%, 16=0.0%, 32=0.0%, >=64=0.0%
submit : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.0%
complete : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.0%
issued : total=r=118612/w=50225/d=0, short=r=0/w=0/d=0
Run status group 0 (all jobs):
READ: io=1853.4MB, aggrb=18966KB/s, minb=18966KB/s, maxb=18966KB/s, mint=100058msec, maxt=100058msec
WRITE: io=803600KB, aggrb=8031KB/s, minb=8031KB/s, maxb=8031KB/s, mint=100058msec, maxt=100058msec
Disk stats (read/write):
sdb: ios=118610/50224, merge=0/0, ticks=2991317/6860, in_queue=2998169, util=99.77%
㈢ Linux运维人员必知必会工具汇总
领域 :工具名称
操作系统 :CentOS、Ubuntu、Redhat、suse、Freebsd
网站服务: nginx、apache、lighttpd、php、tomcat、resin
数据库: Mysql、MariaDB、PostgreSQL
DB中间件 :maxscale、MyCat、atlas、cobar、amoeba、MySQL-proxy
代理相关: lvs、keepalived、haproxy、nginx、heartbeat
网站缓存: squid、nginx、varnish
NoSQL库: Redis、CacheCloud、纳氏和Memcached、MongoDB、HBase、Cassandra、CouchDB
存储相关 :Nfs、FastDFS、Moosefs(mfs)、Ceph 、Hadoop、glusterfs、lustre
版本管理 :svn、git、gitlab、gogs
监控报警 :nagios、cacti、zabbix、munin、hyperic、mrtg、graphite
域名解析: bind、powerdns、dnsmasq
同步软件: scp、rsync、inotify、sersync、drbd
批量管理: SSH、Ansible、Saltstack、expect、puppet
虚拟化: kvm、xen
云计算: openstack、docker、k8s
内网软件: iptables、zebra、iftraf、ntop、tc、iftop
邮件软件: qmail、posfix、sendmail、zimbra
远程拨号: openvpn、pptp、openswan、ipip
统一认证: openldap
队列工具: ActiveMQ、RabbitMQ、核岩Metaq、MemcacheQ、Zeromq、kafka
打包发布: mvn、ants、Jenkins、Walle
测试软件: ab、JMeter、Webbench、LoadRunner、http_load、tcp
带宽测试 :smokeping
性能测试 ;dd、 fio(IOPS测试)、iozone(磁盘测试)
日志相关: rsyslog、Awstats、flume、storm、ELK(Elasticsearch+Logstash+Kibana)
搜索软件: Sphinx、Xapian、Solr
无人值守: rpm、yum(设计rpm包定制及yum仓库构建)
大数据: HDFS、Hive、Hbase、Zookeeper、Pig、Spark、Mahout、flume、sqoop
项目管理: Jira、Redmine
linux管理: 宝塔Linux面板
渗透测试工具: SQLMap、Webscan
开源邮箱: iRedmail、extmail、Zimbra
软件开发 :Sublime Text、Eclipse、Jetbrains
远程连接: putty、Xshell、SecureCRT、MobaXterm、TeamViewer、向日葵
在此为服务器运维人员推荐使用:宝塔面板 www.bt.cn
宝塔面板,近200个免费应用提供使用,如:网站管理、系统安全、系统监控、计划任务、文件管理、软件管洞盯理、一键部署等为服务器运维人员提供安全高效的完成服务器运维工作。
㈣ Linux上MySQL优化提升性能 哪些可以优化的关闭NUMA特性
Linux上MySQL优化提升性能,可以优化关闭NUMA特性如下:
这些其实都源于CPU最新的技术:节能模式。操作系统和CPU硬件配合,系统不繁忙的时候,为了节约电能和降低温度,它会将CPU降频。
为了保证MySQL能够充分利用CPU的资源,建议设置CPU为最大性能模式。这个设置可以在BIOS和操作系统中设置,当然,在BIOS中设置该选项更好,更彻底。
然后我们看看内存方面,我们有哪些可以优化的。
i)
我们先看看numa
非一致存储访问结构
(NUMA
:
Non-Uniform
Memory
Access)
也是最新的内存管理技术。它和对称多处理器结构
(SMP
:
Symmetric
Multi-Processor)
是对应的。
我们可以直观的看到:SMP访问内存的都是代价都是一样的;但是在NUMA架构下,本地内存的访问和非
本地内存的访问代价是不一样的。对应的根据这个特性,操作系统上,我们可以设置进程的内存分配方式。目前支持的方式包括:
--interleave=nodes
--membind=nodes
--cpunodebind=nodes
--physcpubind=cpus
--localalloc
--preferred=node
简而言之,就是说,你可以指定内存在本地分配,在某几个CPU节点分配或者轮询分配。除非
是设置为--interleave=nodes轮询分配方式,即内存可以在任意NUMA节点上分配这种方式以外。其他的方式就算其他NUMA节点上还有内
存剩余,Linux也不会把剩余的内存分配给这个进程,而是采用SWAP的方式来获得内存。
所以最简单的方法,还是关闭掉这个特性。
关闭特性的方法,分别有:可以从BIOS,操作系统,启动进程时临时关闭这个特性。
a)
由于各种BIOS类型的区别,如何关闭NUMA千差万别,我们这里就不具体展示怎么设置了。
b)
在操作系统中关闭,可以直接在/etc/grub.conf的kernel行最后添加numa=off,如下所示:
kernel
/vmlinuz-2.6.32-220.el6.x86_64
ro
root=/dev/mapper/VolGroup-root
rd_NO_LUKS.UTF-8
rd_LVM_LV=VolGroup/root
rd_NO_MD
quiet
SYSFONT=latarcyrheb-sun16
rhgb
crashkernel=auto
rd_LVM_LV=VolGroup/swap
rhgb
crashkernel=auto
quiet
KEYBOARDTYPE=pc
KEYTABLE=us
rd_NO_DM
numa=off
另外可以设置
vm.zone_reclaim_mode=0尽量回收内存。
c)
启动MySQL的时候,关闭NUMA特性:
numactl
--interleave=all
mysqld
当然,最好的方式是在BIOS中关闭。
ii)
我们再看看vm.swappiness。
vm.swappiness是操作系统控制物理内存交换出去的策略。它允许的值是一个百分比的值,最小为0,最大运行100,该值默认为60。vm.swappiness设置为0表示尽量少swap,100表示尽量将inactive的内存页交换出去。
具体的说:当内存基本用满的时候,系统会根据这个参数来判断是把内存中很少用到的inactive
内存交换出去,还是释放数据的cache。
㈤ 面试 linux 文件系统怎样io到底层
前言:本文主要讲解LinuxIO调度层的三种模式:cfp、deadline和noop,并给出各自的优化和适用场景建议。IO调度发生在Linux内核的IO调度层。这个层次是针对Linux的整体IO层次体系来说的。从read()或者write()系统调用的角度来说,Linux整体IO体系可以分为七层,它们分别是:VFS层:虚拟文件系统层。由于内核要跟多种文件系统打交道,而每一种文件系统所实现的数据结构和相关方法都可能不尽相同,所以,内核抽象了这一层,专门用来适配各种文件系统,并对外提供统一操作接口。文件系统层:不同的文件系统实现自己的操作过程,提供自己特有的特征,具体不多说了,大家愿意的话自己去看代码即可。页缓存层:负责真对page的缓存。通用块层:由于绝大多数情况的io操作是跟块设备打交道,所以Linux在此提供了一个类似vfs层的块设备操作抽象层。下层对接各种不同属性的块设备,对上提供统一的BlockIO请求标准。IO调度层:因为绝大多数的块设备都是类似磁盘这样的设备,所以有必要根据这类设备的特点以及应用的不同特点来设置一些不同的调度算法和队列。以便在不同的应用环境下有针对性的提高磁盘的读写效率,这里就是大名鼎鼎的Linux电梯所起作用的地方。针对机械硬盘的各种调度方法就是在这实现的。块设备驱动层:驱动层对外提供相对比较高级的设备操作接口,往往是C语言的,而下层对接设备本身的操作方法和规范。块设备层:这层就是具体的物理设备了,定义了各种真对设备操作方法和规范。有一个已经整理好的[LinuxIO结构图],非常经典,一图胜千言:我们今天要研究的内容主要在IO调度这一层。它要解决的核心问题是,如何提高块设备IO的整体性能?这一层也主要是针对机械硬盘结构而设计的。众所周知,机械硬盘的存储介质是磁盘,磁头在盘片上移动进行磁道寻址,行为类似播放一张唱片。这种结构的特点是,顺序访问时吞吐量较高,但是如果一旦对盘片有随机访问,那么大量的时间都会浪费在磁头的移动上,这时候就会导致每次IO的响应时间变长,极大的降低IO的响应速度。磁头在盘片上寻道的操作,类似电梯调度,实际上在最开始的时期,Linux把这个算法命名为Linux电梯算法,即:如果在寻道的过程中,能把顺序路过的相关磁道的数据请求都“顺便”处理掉,那么就可以在比较小影响响应速度的前提下,提高整体IO的吞吐量。这就是我们为什么要设计IO调度算法的原因。目前在内核中默认开启了三种算法/模式:noop,cfq和deadline。严格算应该是两种:因为第一种叫做noop,就是空操作调度算法,也就是没有任何调度操作,并不对io请求进行排序,仅仅做适当的io合并的一个fifo队列。目前内核中默认的调度算法应该是cfq,叫做完全公平队列调度。这个调度算法人如其名,它试图给所有进程提供一个完全公平的IO操作环境。注:请大家一定记住这个词语,cfq,完全公平队列调度,不然下文就没法看了。cfq为每个进程创建一个同步IO调度队列,并默认以时间片和请求数限定的方式分配IO资源,以此保证每个进程的IO资源占用是公平的,cfq还实现了针对进程级别的优先级调度,这个我们后面会详细解释。查看和修改IO调度算法的方法是:cfq是通用服务器比较好的IO调度算法选择,对桌面用户也是比较好的选择。但是对于很多IO压力较大的场景就并不是很适应,尤其是IO压力集中在某些进程上的场景。因为这种场景我们需要的满足某个或者某几个进程的IO响应速度,而不是让所有的进程公平的使用IO,比如数据库应用。deadline调度(最终期限调度)就是更适合上述场景的解决方案。deadline实现了四个队列:其中两个分别处理正常read和write,按扇区号排序,进行正常io的合并处理以提高吞吐量。因为IO请求可能会集中在某些磁盘位置,这样会导致新来的请求一直被合并,可能会有其他磁盘位置的io请求被饿死。另外两个处理超时read和write的队列,按请求创建时间排序,如果有超时的请求出现,就放进这两个队列,调度算法保证超时(达到最终期限时间)的队列中的请求会优先被处理,防止请求被饿死。不久前,内核还是默认标配四种算法,还有一种叫做as的算法(Anticipatoryscheler),预测调度算法。一个高大上的名字,搞得我一度认为Linux内核都会算命了。结果发现,无非是在基于deadline算法做io调度的之前等一小会时间,如果这段时间内有可以合并的io请求到来,就可以合并处理,提高deadline调度的在顺序读写情况下的数据吞吐量。其实这根本不是啥预测,我觉得不如叫撞大运调度算法,当然这种策略在某些特定场景差效果不错。但是在大多数场景下,这个调度不仅没有提高吞吐量,还降低了响应速度,所以内核干脆把它从默认配置里删除了。毕竟Linux的宗旨是实用,而我们也就不再这个调度算法上多费口舌了。1、cfq:完全公平队列调度cfq是内核默认选择的IO调度队列,它在桌面应用场景以及大多数常见应用场景下都是很好的选择。如何实现一个所谓的完全公平队列(CompletelyFairQueueing)?首先我们要理解所谓的公平是对谁的公平?从操作系统的角度来说,产生操作行为的主体都是进程,所以这里的公平是针对每个进程而言的,我们要试图让进程可以公平的占用IO资源。那么如何让进程公平的占用IO资源?我们需要先理解什么是IO资源。当我们衡量一个IO资源的时候,一般喜欢用的是两个单位,一个是数据读写的带宽,另一个是数据读写的IOPS。带宽就是以时间为单位的读写数据量,比如,100Mbyte/s。而IOPS是以时间为单位的读写次数。在不同的读写情境下,这两个单位的表现可能不一样,但是可以确定的是,两个单位的任何一个达到了性能上限,都会成为IO的瓶颈。从机械硬盘的结构考虑,如果读写是顺序读写,那么IO的表现是可以通过比较少的IOPS达到较大的带宽,因为可以合并很多IO,也可以通过预读等方式加速数据读取效率。当IO的表现是偏向于随机读写的时候,那么IOPS就会变得更大,IO的请求的合并可能性下降,当每次io请求数据越少的时候,带宽表现就会越低。从这里我们可以理解,针对进程的IO资源的主要表现形式有两个:进程在单位时间内提交的IO请求个数和进程占用IO的带宽。其实无论哪个,都是跟进程分配的IO处理时间长度紧密相关的。有时业务可以在较少IOPS的情况下占用较大带宽,另外一些则可能在较大IOPS的情况下占用较少带宽,所以对进程占用IO的时间进行调度才是相对最公平的。即,我不管你是IOPS高还是带宽占用高,到了时间咱就换下一个进程处理,你爱咋样咋样。所以,cfq就是试图给所有进程分配等同的块设备使用的时间片,进程在时间片内,可以将产生的IO请求提交给块设备进行处理,时间片结束,进程的请求将排进它自己的队列,等待下次调度的时候进行处理。这就是cfq的基本原理。当然,现实生活中不可能有真正的“公平”,常见的应用场景下,我们很肯能需要人为的对进程的IO占用进行人为指定优先级,这就像对进程的CPU占用设置优先级的概念一样。所以,除了针对时间片进行公平队列调度外,cfq还提供了优先级支持。每个进程都可以设置一个IO优先级,cfq会根据这个优先级的设置情况作为调度时的重要参考因素。优先级首先分成三大类:RT、BE、IDLE,它们分别是实时(RealTime)、最佳效果(BestTry)和闲置(Idle)三个类别,对每个类别的IO,cfq都使用不同的策略进行处理。另外,RT和BE类别中,分别又再划分了8个子优先级实现更细节的QOS需求,而IDLE只有一个子优先级。另外,我们都知道内核默认对存储的读写都是经过缓存(buffer/cache)的,在这种情况下,cfq是无法区分当前处理的请求是来自哪一个进程的。只有在进程使用同步方式(syncread或者syncwirte)或者直接IO(DirectIO)方式进行读写的时候,cfq才能区分出IO请求来自哪个进程。所以,除了针对每个进程实现的IO队列以外,还实现了一个公共的队列用来处理异步请求。当前内核已经实现了针对IO资源的cgroup资源隔离,所以在以上体系的基础上,cfq也实现了针对cgroup的调度支持。总的来说,cfq用了一系列的数据结构实现了以上所有复杂功能的支持,大家可以通过源代码看到其相关实现,文件在源代码目录下的block/cfq-iosched.c。1.1cfq设计原理在此,我们对整体数据结构做一个简要描述:首先,cfq通过一个叫做cfq_data的数据结构维护了整个调度器流程。在一个支持了cgroup功能的cfq中,全部进程被分成了若干个contralgroup进行管理。每个cgroup在cfq中都有一个cfq_group的结构进行描述,所有的cgroup都被作为一个调度对象放进一个红黑树中,并以vdisktime为key进行排序。vdisktime这个时间纪录的是当前cgroup所占用的io时间,每次对cgroup进行调度时,总是通过红黑树选择当前vdisktime时间最少的cgroup进行处理,以保证所有cgroups之间的IO资源占用“公平”。当然我们知道,cgroup是可以对blkio进行资源比例分配的,其作用原理就是,分配比例大的cgroup占用vdisktime时间增长较慢,分配比例小的vdisktime时间增长较快,快慢与分配比例成正比。这样就做到了不同的cgroup分配的IO比例不一样,并且在cfq的角度看来依然是“公平“的。选择好了需要处理的cgroup(cfq_group)之后,调度器需要决策选择下一步的service_tree。service_tree这个数据结构对应的都是一系列的红黑树,主要目的是用来实现请求优先级分类的,就是RT、BE、IDLE的分类。每一个cfq_group都维护了7个service_trees,其定义如下:其中service_tree_idle就是用来给IDLE类型的请求进行排队用的红黑树。而上面二维数组,首先第一个维度针对RT和BE分别各实现了一个数组,每一个数组中都维护了三个红黑树,分别对应三种不同子类型的请求,分别是:SYNC、SYNC_NOIDLE以及ASYNC。我们可以认为SYNC相当于SYNC_IDLE并与SYNC_NOIDLE对应。idling是cfq在设计上为了尽量合并连续的IO请求以达到提高吞吐量的目的而加入的机制,我们可以理解为是一种“空转”等待机制。空转是指,当一个队列处理一个请求结束后,会在发生调度之前空等一小会时间,如果下一个请求到来,则可以减少磁头寻址,继续处理顺序的IO请求。为了实现这个功能,cfq在service_tree这层数据结构这实现了SYNC队列,如果请求是同步顺序请求,就入队这个servicetree,如果请求是同步随机请求,则入队SYNC_NOIDLE队列,以判断下一个请求是否是顺序请求。所有的异步写操作请求将入队ASYNC的servicetree,并且针对这个队列没有空转等待机制。此外,cfq还对SSD这样的硬盘有特殊调整,当cfq发现存储设备是一个ssd硬盘这样的队列深度更大的设备时,所有针对单独队列的空转都将不生效,所有的IO请求都将入队SYNC_NOIDLE这个servicetree。每一个servicetree都对应了若干个cfq_queue队列,每个cfq_queue队列对应一个进程,这个我们后续再详细说明。cfq_group还维护了一个在cgroup内部所有进程公用的异步IO请求队列,其结构如下:异步请求也分成了RT、BE、IDLE这三类进行处理,每一类对应一个cfq_queue进行排队。BE和RT也实现了优先级的支持,每一个类型有IOPRIO_BE_NR这么多个优先级,这个值定义为8,数组下标为0-7。我们目前分析的内核代码版本为Linux4.4,可以看出,从cfq的角度来说,已经可以实现异步IO的cgroup支持了,我们需要定义一下这里所谓异步IO的含义,它仅仅表示从内存的buffer/cache中的数据同步到硬盘的IO请求,而不是aio(man7aio)或者linux的native异步io以及lio机制,实际上这些所谓的“异步”IO机制,在内核中都是同步实现的(本质上冯诺伊曼计算机没有真正的“异步”机制)。我们在上面已经说明过,由于进程正常情况下都是将数据先写入buffer/cache,所以这种异步IO都是统一由cfq_group中的async请求队列处理的。那么为什么在上面的service_tree中还要实现和一个ASYNC的类型呢?这当然是为了支持区分进程的异步IO并使之可以“完全公平”做准备喽。实际上在最新的cgroupv2的blkio体系中,内核已经支持了针对bufferIO的cgroup限速支持,而以上这些可能容易混淆的一堆类型,都是在新的体系下需要用到的类型标记。新体系的复杂度更高了,功能也更加强大,但是大家先不要着急,正式的cgroupv2体系,在Linux4.5发布的时候会正式跟大家见面。我们继续选择service_tree的过程,三种优先级类型的service_tree的选择就是根据类型的优先级来做选择的,RT优先级最高,BE其次,IDLE最低。就是说,RT里有,就会一直处理RT,RT没了再处理BE。每个service_tree对应一个元素为cfq_queue排队的红黑树,而每个cfq_queue就是内核为进程(线程)创建的请求队列。每一个cfq_queue都会维护一个rb_key的变量,这个变量实际上就是这个队列的IO服务时间(servicetime)。这里还是通过红黑树找到servicetime时间最短的那个cfq_queue进行服务,以保证“完全公平”。选择好了cfq_queue之后,就要开始处理这个队列里的IO请求了。这里的调度方式基本跟deadline类似。cfq_queue会对进入队列的每一个请求进行两次入队,一个放进fifo中,另一个放进按访问扇区顺序作为key的红黑树中。默认从红黑树中取请求进行处理,当请求的延时时间达到deadline时,就从红黑树中取等待时间最长的进行处理,以保证请求不被饿死。这就是整个cfq的调度流程,当然其中还有很多细枝末节没有交代,比如合并处理以及顺序处理等等。1.2cfq的参数调整理解整个调度流程有助于我们决策如何调整cfq的相关参数。所有cfq的可调参数都可以在/sys/class/block/sda/queue/iosched/目录下找到,当然,在你的系统上,请将sda替换为相应的磁盘名称。我们来看一下都有什么:这些参数部分是跟机械硬盘磁头寻道方式有关的,如果其说明你看不懂,请先补充相关知识:back_seek_max:磁头可以向后寻址的最大范围,默认值为16M。back_seek_penalty:向后寻址的惩罚系数。这个值是跟向前寻址进行比较的。以上两个是为了防止磁头寻道发生抖动而导致寻址过慢而设置的。基本思路是这样,一个io请求到来的时候,cfq会根据其寻址位置预估一下其磁头寻道成本。设置一个最大值back_seek_max,对于请求所访问的扇区号在磁头后方的请求,只要寻址范围没有超过这个值,cfq会像向前寻址的请求一样处理它。再设置一个评估成本的系数back_seek_penalty,相对于磁头向前寻址,向后寻址的距离为1/2(1/back_seek_penalty)时,cfq认为这两个请求寻址的代价是相同。这两个参数实际上是cfq判断请求合并处理的条件限制,凡事复合这个条件的请求,都会尽量在本次请求处理的时候一起合并处理。fifo_expire_async:设置异步请求的超时时间。同步请求和异步请求是区分不同队列处理的,cfq在调度的时候一般情况都会优先处理同步请求,之后再处理异步请求,除非异步请求符合上述合并处理的条件限制范围内。当本进程的队列被调度时,cfq会优先检查是否有异步请求超时,就是超过fifo_expire_async参数的限制。如果有,则优先发送一个超时的请求,其余请求仍然按照优先级以及扇区编号大小来处理。fifo_expire_sync:这个参数跟上面的类似,区别是用来设置同步请求的超时时间。slice_idle:参数设置了一个等待时间。这让cfq在切换cfq_queue或servicetree的时候等待一段时间,目的是提高机械硬盘的吞吐量。一般情况下,来自同一个cfq_queue或者servicetree的IO请求的寻址局部性更好,所以这样可以减少磁盘的寻址次数。这个值在机械硬盘上默认为非零。当然在固态硬盘或者硬RAID设备上设置这个值为非零会降低存储的效率,因为固态硬盘没有磁头寻址这个概念,所以在这样的设备上应该设置为0,关闭此功能。group_idle:这个参数也跟上一个参数类似,区别是当cfq要切换cfq_group的时候会等待一段时间。在cgroup的场景下,如果我们沿用slice_idle的方式,那么空转等待可能会在cgroup组内每个进程的cfq_queue切换时发生。这样会如果这个进程一直有请求要处理的话,那么直到这个cgroup的配额被耗尽,同组中的其它进程也可能无法被调度到。这样会导致同组中的其它进程饿死而产生IO性能瓶颈。在这种情况下,我们可以将slice_idle=0而group_idle=8。这样空转等待就是以cgroup为单位进行的,而不是以cfq_queue的进程为单位进行,以防止上述问题产生。low_latency:这个是用来开启或关闭cfq的低延时(lowlatency)模式的开关。当这个开关打开时,cfq将会根据target_latency的参数设置来对每一个进程的分片时间(slicetime)进行重新计算。这将有利于对吞吐量的公平(默认是对时间片分配的公平)。关闭这个参数(设置为0)将忽略target_latency的值。这将使系统中的进程完全按照时间片方式进行IO资源分配。这个开关默认是打开的。我们已经知道cfq设计上有“空转”(idling)这个概念,目的是为了可以让连续的读写操作尽可能多的合并处理,减少磁头的寻址操作以便增大吞吐量。如果有进程总是很快的进行顺序读写,那么它将因为cfq的空转等待命中率很高而导致其它需要处理IO的进程响应速度下降,如果另一个需要调度的进程不会发出大量顺序IO行为的话,系统中不同进程IO吞吐量的表现就会很不均衡。就比如,系统内存的cache中有很多脏页要写回时,桌面又要打开一个浏览器进行操作,这时脏页写回的后台行为就很可能会大量命中空转时间,而导致浏览器的小量IO一直等待,让用户感觉浏览器运行响应速度变慢。这个low_latency主要是对这种情况进行优化的选项,当其打开时,系统会根据target_latency的配置对因为命中空转而大量占用IO吞吐量的进程进行限制,以达到不同进程IO占用的吞吐量的相对均衡。这个开关比较合适在类似桌面应用的场景下打开。target_latency:当low_latency的值为开启状态时,cfq将根据这个值重新计算每个进程分配的IO时间片长度。quantum:这个参数用来设置每次从cfq_queue中处理多少个IO请求。在一个队列处理事件周期中,超过这个数字的IO请求将不会被处理。这个参数只对同步的请求有效。slice_sync:当一个cfq_queue队列被调度处理时,它可以被分配的处理总时间是通过这个值来作为一个计算参数指定的。公式为:time_slice=slice_sync+(slice_sync/5*(4-prio))。这个参数对同步请求有效。slice_async:这个值跟上一个类似,区别是对异步请求有效。slice_async_rq:这个参数用来限制在一个slice的时间范围内,一个队列最多可以处理的异步请求个数。请求被处理的最大个数还跟相关进程被设置的io优先级有关。1.3cfq的IOPS模式我们已经知道,默认情况下cfq是以时间片方式支持的带优先级的调度来保证IO资源占用的公平。高优先级的进程将得到的时间片长度,而低优先级的进程时间片相对较小。当我们的存储是一个高速并且支持NCQ(原生指令队列)的设备的时候,我们最好可以让其可以从多个cfq队列中处理多路的请求,以便提升NCQ的利用率。此时使用时间片的分配方式分配资源就显得不合时宜了,因为基于时间片的分配,同一时刻最多能处理的请求队列只有一个。这时,我们需要切换cfq的模式为IOPS模式。切换方式很简单,就是将slice_idle=0即可。内核会自动检测你的存储设备是否支持NCQ,如果支持的话cfq会自动切换为IOPS模式。另外,在默认的基于优先级的时间片方式下,我们可以使用ionice命令来调整进程的IO优先级。进程默认分配的IO优先级是根据进程的nice值计算而来的,计算方法可以在manionice中看到,这里不再废话。2、deadline:最终期限调度deadline调度算法相对cfq要简单很多。其设计目标是:在保证请求按照设备扇区的顺序进行访问的同时,兼顾其它请求不被饿死,要在一个最终期限前被调度到。我们知道磁头对磁盘的寻道是可以进行顺序访问和随机访问的,因为寻道延时时间的关系,顺序访问时IO的吞吐量更大,随机访问的吞吐量小。如果我们想为一个机械硬盘进行吞吐量优化的话,那么就可以让调度器按照尽量复合顺序访问的IO请求进行排序,之后请求以这样的顺序发送给硬盘,就可以使IO的吞吐量更大。但是这样做也有另一个问题,就是如果此时出现了一个请求,它要访问的磁道离目前磁头所在磁道很远,应用的请求又大量集中在目前磁道附近。导致大量请求一直会被合并和插队处理,而那个要访问比较远磁道的请求将因为一直不能被调度而饿死。deadline就是这样一种调度器,能在保证IO最大吞吐量的情况下,尽量使远端请求在一个期限内被调度而不被饿死的调度器。
㈥ 服务器怎么和电脑连接
怎样把电脑和服务器连接起来? 10分
1、 双机直连
即是说其中一台计算机与ADSL Modem相连,然后通过网卡直接与另一台计算机连接。如果采用这种连接,就需要在宽带接入的计算机上作internet共享代理设置,比如安装wingate等代理软件,来实现双机共享上网。这算是最最廉价的网络。
2、 宽带路由器+网卡+计算机
这种方式主要用在共享计算机不多的情况下。因为一般的宽带路由器都提供了4个交换机端口,如果需要共享的计算机小于4台的话,就没必要再花钱去购买交换机了。具体连接方式为:ADSL宽带线路连接ADSL Modem,直连双绞线连接Modem和路由器,其它计算机用交叉双绞线与路由器相连即可。
3、 宽带路由器+交换机+网卡+计算机
对应上面一种情况,此方式就是运用在共享计算机大于宽带路由器交换端口的情况下。这时就需要交换机帮忙,并根据共享计算机的数量选择相应端口的交换机。即是说,所有共享计算机先与交换机相连,再通过交换机连接宽带路由器,从而实现共享上网。
4、 交换机+网卡+计算机
如果你的ADSL Modem自带有宽带路由功能(请查看产品说明书),那就可以省去路由器。这是跟上面三种方式唯一的区别。连接起来也更方便,根本不需要设置,连接方式为:ADSL Modem的LAN口用双绞线和交换机的任一端口连接,再将各计算机分别接入交换机剩余端口即可。
组建局域网,共享上网
——》一:网线直连不是最经济的做法,虽然我们只需要添加1条网线、1块网卡,总价格算起来不会超过100元。但是这种做法有个最大的弱点,就是上网时两台机器必须同时开着,除非你只用主机上网,否则日积月累的电费,呵呵也不见得比其它方法省钱~~,所以建议最好不使用这种办法!
——》二:采用交换机/HUB、服务器的方式。我们可以采用SyGate等软件做成谁先开机谁做主机的共享形式,但还潜在一个问题,就是当作为主机的那台机器提前关机了,另外一台机器的网络也许随之断开,如果你这时候正用ie下载文件到一半,如果你正在玩联众……呵呵后果可想而知!
——》三:采用宽带路由方式。如果你不想自己设置,可以在购买宽带的同时让技术人员帮你设置好。
同时这种方式带来的好处还有就是稳定!是以上所有方案中最稳定的,这个好像没有异议吧。还有就是省力,你不需要每次上网都要拨号了,这都由宽带路由来自动替你完成,而且宽带路由还有断线重拨功能,省去了多少麻烦?接下来就是安全,你暴露在Internet上的IP是你路由的IP,而非机器本身的IP,这样你就无形中被保护起来。
再有就是不违反电信或者网通的规定,即使他限制了MAC地址也没用,因为路由本身是有MAC地址的。
——》1,首先将宽带猫与路由器的WLAN端口连接,可使用猫随机带的连接线。
——》2,用直连网线将路由器的一个Lan口与交换机的UpLing口连接。还用直连网线连接交换机的普通口和电脑。这样硬件环境就做好了。如果你的机器比较少,也就2、3台的话,没有必要加交换机,用直连网线将路由器的一个Lan口与一台电脑连接即可。
——》3,第一台机器,先设置你的网络参数(右键“网上邻居”-“属性”-右键“本地连接”-属性-找到TCP/IP协议后双击它):
IP地址:192.168.1.11
子网掩码:255.255.255.0
网关:192.16绩.1.1
DNS:不要管它。
然后一路“确定”,需要重启的时候重启。不过有没有提示,你最好还是重新启动一下。
——》4,第二台机器,如第一台,只是将IP地址变成1......>>
怎样在电脑连接服务器
你好.我来解答下你的问题.
服务器上架好以后服务商会给你提供IP用户和密码.如果是WIN的系统.只需要在本地电脑点开始-附件-程序-通讯-远程桌面连接.然后输入IP用户和密码.点连接即可登录.若是用的LINUX系统.可以借助于PUTTY远程连接工具登录.
海腾数据杨闯为你解答.
电脑怎么连接学校的服务器
1.首先打开电脑,看到右下角的网络标志,左键单击一下点开,然后看到网络共享中心,左键单击一下
2.进入网络共享中心之后,找到设置新的连接,左键单击,开始设置
3.点击手动连接到工作区这个选项
4.这里会出现要求设置新的连接,我是设置过了,才会有两个选择,没有设置过得只有一个设置新的连接的选项,直接选择设置新的连接就行了
5.点击选择我的VPN连接,进行地址设置,这个地址设置很关键,只有地址是对的才能接上校园网
6.这里填上学校给你的连接地址,每一个学校的地址都不同,这个就是学校服务器端的IP,填好之后直接下一步
7.这个窗口是进行密码设置的,填上你的账号,和你的密码,密码要记住,以后登录就靠它了,设置完了点击链接
8.链接好了之后还需要设置一下你的VPN属性,不然就不能上网,因为你的端口是子端口,要通过验证。右键单击你的VPN链接的标志,会看到属性,单击一下就行了
9.接下来出现的窗口选项,网络,安全,一个都不能少,全部要设置成图中的选择,必须和图中的一样,不然是不能联网的。
我电脑连接不上我的服务器?怎么回事?
你的服务器是用的windows操作系统吗?
可能是你服务畅里面没有设置允许别的电脑通过远程连接服务器。你右键点服务器里的我的电脑,然后点管理,里面有个服务,服务里面有很多项,其中一项是可以开启的,就是允许别人远程连接的服务,你看看你这个服务有没有开启啊。
电脑连接不上服务器是怎么回事?
我的电脑也出现过这样的问题,还重装了系统后来还是有这样的问题。我告诉你两个可能。
第一:电脑中毒了;解决方法:杀毒或重装系统。
第二:DNS服务器地址不能自动配置或配置错误.如果你可以直接用地址上网那就这种可能性大一些了。操作方法:,在IE浏览器中键入“202.103.69.205”。如果能够进入网站那就是我说的第二个原因了。
解决方法:手动设置DNS服务器地址。设置方法:网上邻居右键-》属性-》INTERNET连接协议双击—》使用下面的DNS服务器地址。如果还不可以就建议重装系统,然后在手动设置DNS服务器地址。
如何连接服务器
远程连接是工作、生活中会经常用到的手段,当某台计算机开启了远程连接功能后我们就可以在网络的另一端控制这台计算机了,通过远程桌面功能我们就可以实时的操作这台计算机了。 远程连接的步骤是比较简单的,下面给大家介绍远程连接的操作 首先,需要将计算机(服务器)的远程访问功能开启,才能够被远程访问。开启远程访问:右键“我的电脑”点击属性,点击最右边的“远程”按钮,把远程桌面里面的“允许用户远程连接到此计算机”勾上就可以了。 然后使用其它计算机进行远程桌面连接操作:点击“开始—运行” 在运行窗口里输入mstsc(远程桌面连接的命令) 或者可以在“开始—所有程序—附件—远程桌面连接”进入远程桌面连接 输入你要连接的计算机的IP地址,然后使用对应的用户名及密码登陆 这里一定要确保IP地址、用户名、密码都是相关联的,才能成功登陆其它计算机。因为安全原因,一般一个用户连接一个远程桌面只能连接三个,如果不正常退出,那么会造成登录三次以后就无法登录了。
所以正确的退出也是很重要的。退出时,要点击“开始-关机”,在下拉菜单中选择“断开”这样就不会因为不正常退出而造成无法访问了!
打印机连到服务器上,怎样把电脑上连上打印机?
你现在是将打印机到底连在什么地方啊,服务器还是你的电脑?
如果是服务器上
在本机运行输入cmd 输入“\\你服务器的IP地址”然后是在弹出的窗口中输入登陆的用户名和密码进入,然后双击共享的打印机就可以了。
如果打印机是连在本机的
先关闭打印机电源,用驱动程序一步一步安装,提示插入数据耽和电源时插入数据线,然后打开电源,自动找到打印机后直到安装结束。
怎样知道自己的电脑连接的哪台服务器啊?
最简单的可视化操作,如果你有360安全卫士,桌面右下角,右键360,流量防火墙,看见了没有。
很直观!
想问一下服务器和电脑之间到底是怎么运作的,服务器直接连跟线到电脑上? 70分
差异很大,并非单纯cpu和主板的区别,比如服务器为了高可靠性,会设计成冗余电源,磁盘子系统多使用带冗余的raid1和raid5,性能上可以提供很高的iops。服务器通过网络给客户提供服务,比如email,web,database,online交易等,因此大部分服务器的显示子系统很烂,大多是主板集成的一片2d显卡,显存16m,最多128m,比如mx200.
我租了服务器。用我的电脑怎么连接
点开始~程序~所有程度~附件~通迅~远程桌面连接~输入IP登录~输入张号和密码