当前位置:首页 » 操作系统 » 粒子群算法matlab代码

粒子群算法matlab代码

发布时间: 2023-06-06 17:44:10

❶ 粒子群算法用matlab做,要把粒子初始化为矩阵要怎么做

可以参考一下这段代码

%------给定初始化条件----------------------------------------------
c1=1.8; %学习因子1
c2=1.8; %学习因子2
WMax=1.6; %惯性权重
WMin=0.8; %惯性权重
MaxDT=100; %最大迭代次数
D=3; %搜索空间维数(未知数个数)
N=30; %初始化群体个体数目
XUp=20/(2^0.5); %初始化位移上限
XDown=-20/(2^0.5); %初始化位移下限
VUp=0.5; %初始化速度上限
VDown=0.0; %初始化速度下限
eps=10^(-6); %设置精度(在已知最小值时候用)
%------初始化种群的个体(可以在这里限定位置和速度的范围)------------

x=((XUp-XDown).*rand(N,2*D)+XDown); %随机初始化位置
v=((VUp-VDown).*rand(N,2*D)+VDown); %随机初始化速度

❷ matlab实现粒子群算法优化LQR法得不到最优解

PSO确实会存在得不到最优解的情况,因为严格意义上它不是全局最优的算法,而且在比较复杂的问题上,得不到最优解的情况很容易发现。

建议你增大种群大小,增加迭代次数。

❸ 求粒子群算法MATLAB完整代码

%% 清空环境
clear
clc
tic
%% 参数初始化
% 粒子群算法中的两个参数
c1 = 1.49445;
c2 = 1.49445;

maxgen = 200; % 进化次数
sizepop = 20; % 种群规模

Vmax = 1;
Vmin = -1;
popmax = 5;
popmin = -5;

%% 产生初始粒子和速度
for i = 1:sizepop
% 随机产生一个种群
pop(i,:) = 5 * rands(1,2); % 初始种群
V(i,:) = rands(1,2); % 初始化速度
% 计算适应度
fitness(i) = fun(pop(i,:)); % 染色体的适应度
end

% 找最好的染色体
[bestfitness bestindex] = min(fitness);
zbest = pop(bestindex,:); % 全局最佳
gbest = pop; % 个体最佳
fitnessgbest = fitness; % 个体最佳适应度值
fitnesszbest = bestfitness; % 全局最佳适应度值

%% 迭代寻优
for i = 1:maxgen
for j = 1:sizepop

% 速度更新
V(j,:) = V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:));
V(j,find(V(j,:)>Vmax)) = Vmax;
V(j,find(V(j,:)<Vmin)) = Vmin;

%种群更新
pop(j,:) = pop(j,:) + 0.5*V(j,:);
pop(j,find(pop(j,:)>popmax)) = popmax;
pop(j,find(pop(j,:)<popmin)) = popmin;

% 自适应变异
if rand > 0.8
k = ceil(2*rand);
pop(j,k) = rand;
end

% 适应度值
fitness(j) = fun(pop(j,:));
end

% 个体最优更新
if fitness(j) < fitnessgbest(j)
gbest(j,:) = pop(j,:);
fitnessgbest(j) = fitness(j);
end

% 群体最优更新
if fitness(j) < fitnesszbest
zbest = pop(j,:);
fitnesszbest = fitness(j);
end

yy(i) = fitnesszbest;

end
toc
%% 结果分析
plot(yy);
title(['适应度曲线 ' '终止代数=' num2str(maxgen)]);
xlabel('进化代数');
ylabel('适应度');

fun函数如下
function y = fun(x)
y = -20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2)) - exp((cos(2*pi*x(1))+ cos(2*pi*x(2)))/2) + 20 + 2.71289;

❹ 用粒子群算法求解线性约束整数规划的Matlab程序

对粒子群的约束问题涉及的比较少。这儿摘抄下网络的内容:

PSO算法推广到约束优化问题,分为两类:(http://ke..com/view/1531379.htm)
(1)罚函数法。罚函数的目的是将约束优化问题转化成无约束优化问题。
(2)将粒子群的搜索范围都限制在条件约束簇内,即在可行解范围内寻优。

第一种方法有相关论文,看了下,感觉比较适合等式约束情况,比较类似于在适应度函数中加入拉格朗日乘子的做法,如果论文下不到的话,请留言。

第二种做法倒是用过。大概讲下。
针对你的问题,初始化两维向量,但是由于存在不等式约束,所以考虑先初始化向量的第一维,然后动态算出第二维的范围,随机出第二维变量。然后就是计算适应度值,全局、局部最优。
更新过程一样,先更新第一维变量,然后动态计算第二维的范围,更新第二维,如果更新后超过了边界,则取边界值(或者也可以再次重新更新,直到满足条件,直觉上感觉第一种还好点,第二种可能会出现无法更新的情况),更新完毕后,计算适应度,更新全局、局部最优解。

补充两个链接吧
http://download.csdn.net/detail/yinjian_2004/1567342
论文:基于改进粒子群优化算法的约束多目标优化

❺ 求实现基于粒子群算法的函数极值寻优算法MATLAB程序

for i=1:sizepop
% 随机产生一个种群
pop(i,:)=2*rands(1,2); % 初始化粒子
V(i,:)=0.5*rands(1,2); % 初始化速度

% 计算粒子适应度值
fitness(i)=fun(pop(i,:));
end

[bestfitness bestindex]=min(fitness);
zbest=pop(bestindex,:); % 群体极值位置
gbest=pop; % 个体极值位置
fitnessgbest=fitness; % 个体极值适应度值
fitnesszbest=bestfitness % 群体极值适应度值
% 迭代寻优
for i=1:maxgen
% 粒子位置和速度更新
for j=1:sizepop
% 速度更新
V(j,:)=V(j,:)+c1*rand*(gbest(j,:)-pop(j,:))+c2*rand*(zbest-pop(j,:));
V(j,find(V(j,:)>Vmax))=Vmax;
V(j,find(V(j,:)<Vmin))=Vmin;

% 粒子更新
pop(j,:)=pop(j,:)+0.5*V(j,:);
pop(j,find(pop(j,:)>popmax))=popmax;
pop(j,find(pop(j,:)<popmin))=popmin;

%新粒子适应度值
fitness(j)=fun(pop(j,:));
end

% 个体极值和种群极值更新
for j=1:sizepop

% 个体极值更新
if fitness(j)>fitnessgbest(j)
gbest(j,:)=pop(j,:);
fitnessgbest(j)=fitness(j);
end

% 群体极值更新
if fitness(j)>fitnesszbest
zbest=pop(j,:);
fitnesszbest=fitness(j);
end
end

% 每代最优值记录到yy数组中
result(i)=fitnesszbest;
end
% 画出每代最优个体适应度值
plot(result)
title('最优个体适应度值','fontsize',12);
xlabel('进化代数','fontsize',12);ylabel('适应度值','fontsize',12);

❻ matlab用粒子群算法求解方程组最优解

这关键是适应度函数的问题,你可以编写如下适应度函数:
F=|E(X1y1+X2y2)-0|+|D(X1y1+X2y2)-1|,F值越小越好,||指的是绝对值。

而变量你就选取X1和X2里的每个元素。比如X1=[x1,x2,x3];X2=[x4,x5,x6];你就可以设置PSO的变量为x1到x6这六个值。
答毕,不懂追问。

热点内容
scratch少儿编程课程 发布:2025-04-16 17:11:44 浏览:628
荣耀x10从哪里设置密码 发布:2025-04-16 17:11:43 浏览:357
java从入门到精通视频 发布:2025-04-16 17:11:43 浏览:74
php微信接口教程 发布:2025-04-16 17:07:30 浏览:298
android实现阴影 发布:2025-04-16 16:50:08 浏览:788
粉笔直播课缓存 发布:2025-04-16 16:31:21 浏览:338
机顶盒都有什么配置 发布:2025-04-16 16:24:37 浏览:203
编写手游反编译都需要学习什么 发布:2025-04-16 16:19:36 浏览:801
proteus编译文件位置 发布:2025-04-16 16:18:44 浏览:357
土压缩的本质 发布:2025-04-16 16:13:21 浏览:583