算法复杂上界
‘壹’ 算法的空间复杂度和时间复杂度的关系
论坛
活动
招聘
专题
打开CSDN APP
Copyright © 1999-2020, CSDN.NET, All Rights Reserved
搜索博文/帖子/用户
登录
zolalad
关注
算法的时间复杂度和空间复杂度-总结 原创
2013-09-20 16:01:26
308点赞
zolalad
码龄9年
关注
算法的时间复杂度和空间复杂度-总结
通常,对于一个给定的算法,我们要做 两项分析。第一是从数学上证明算法的正确性,这一步主要用到形式化证明的方法及相关推理模式,如循环不变式、数学归纳法等。而在证明算法是正确的基础上,第二部就是分析算法的时间复杂度。算法的时间复杂度反映了程序执行时间随输入规模增长而增长的量级,在很大程度上能很好反映出算法的优劣与否。因此,作为程序员,掌握基本的算法时间复杂度分析方法是很有必要的。
算法执行时间需通过依据该算法编制的程序在计算机上运行时所消耗的时间来度量。而度量一个程序的执行时间通常有两种方法。
一、事后统计的方法
这种方法可行,但不是一个好的方法。该方法有两个缺陷:一是要想对设计的算法的运行性能进行评测,必须先依据算法编制相应的程序并实际运行;二是所得时间的统计量依赖于计算机的硬件、软件等环境因素,有时容易掩盖算法本身的优势。
二、事前分析估算的方法
因事后统计方法更多的依赖于计算机的硬件、软件等环境因素,有时容易掩盖算法本身的优劣。因此人们常常采用事前分析估算的方法。
在编写程序前,依据统计方法对算法进行估算。一个用高级语言编写的程序在计算机上运行时所消耗的时间取决于下列因素:
(1). 算法采用的策略、方法;(2). 编译产生的代码质量;(3). 问题的输入规模;(4). 机器执行指令的速度。
一个算法是由控制结构(顺序、分支和循环3种)和原操作(指固有数据类型的操作)构成的,则算法时间取决于两者的综合效果。为了便于比较同一个问题的不同算法,通常的做法是,从算法中选取一种对于所研究的问题(或算法类型)来说是基本操作的原操作,以该基本操作的重复执行的次数作为算法的时间量度。
1、时间复杂度
(1)时间频度 一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。
(2)时间复杂度 在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。 一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。
另外,上面公式中用到的 Landau符号其实是由德国数论学家保罗·巴赫曼(Paul Bachmann)在其1892年的着作《解析数论》首先引入,由另一位德国数论学家艾德蒙·朗道(Edmund Landau)推广。Landau符号的作用在于用简单的函数来描述复杂函数行为,给出一个上或下(确)界。在计算算法复杂度时一般只用到大O符号,Landau符号体系中的小o符号、Θ符号等等比较不常用。这里的O,最初是用大写希腊字母,但现在都用大写英语字母O;小o符号也是用小写英语字母o,Θ符号则维持大写希腊字母Θ。
T (n) = Ο(f (n)) 表示存在一个常数C,使得在当n趋于正无穷时总有 T (n) ≤ C * f(n)。简单来说,就是T(n)在n趋于正无穷时最大也就跟f(n)差不多大。也就是说当n趋于正无穷时T (n)的上界是C * f(n)。其虽然对f(n)没有规定,但是一般都是取尽可能简单的函数。例如,O(2n2+n +1) = O (3n2+n+3) = O (7n2 + n) = O ( n2 ) ,一般都只用O(n2)表示就可以了。注意到大O符号里隐藏着一个常数C,所以f(n)里一般不加系数。如果把T(n)当做一棵树,那么O(f(n))所表达的就是树干,只关心其中的主干,其他的细枝末节全都抛弃不管。
在各种不同算法中,若算法中语句执行次数为一个常数,则时间复杂度为O(1),另外,在时间频度不相同时,时间复杂度有可能相同,如T(n)=n2+3n+4与T(n)=4n2+2n+1它们的频度不同,但时间复杂度相同,都为O(n2)。 按数量级递增排列,常见的时间复杂度有:常数阶O(1),对数阶O(log2n),线性阶O(n), 线性对数阶O(nlog2n),平方阶O(n2),立方阶O(n3),..., k次方阶O(nk),指数阶O(2n)。随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低。
从图中可见,我们应该尽可能选用多项式阶O(nk)的算法,而不希望用指数阶的算法。
常见的算法时间复杂度由小到大依次为:Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)<…<Ο(2n)<Ο(n!)
一般情况下,对一个问题(或一类算法)只需选择一种基本操作来讨论算法的时间复杂度即可,有时也需要同时考虑几种基本操作,甚至可以对不同的操作赋予不同的权值,以反映执行不同操作所需的相对时间,这种做法便于综合比较解决同一问题的两种完全不同的算法。
(3)求解算法的时间复杂度的具体步骤是:
⑴ 找出算法中的基本语句;
算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。
⑵ 计算基本语句的执行次数的数量级;
只需计算基本语句执行次数的数量级,这就意味着只要保证基本语句执行次数的函数中的最高次幂正确即可,可以忽略所有低次幂和最高次幂的系数。这样能够简化算法分析,并且使注意力集中在最重要的一点上:增长率。
⑶ 用大Ο记号表示算法的时间性能。
将基本语句执行次数的数量级放入大Ο记号中。
如果算法中包含嵌套的循环,则基本语句通常是最内层的循环体,如果算法中包含并列的循环,则将并列循环的时间复杂度相加。例如:
for (i=1; i<=n; i++)
x++;
for (i=1; i<=n; i++)
for (j=1; j<=n; j++)
x++;
第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为Ο(n2),则整个算法的时间复杂度为Ο(n+n2)=Ο(n2)。
Ο(1)表示基本语句的执行次数是一个常数,一般来说,只要算法中不存在循环语句,其时间复杂度就是Ο(1)。其中Ο(log2n)、Ο(n)、 Ο(nlog2n)、Ο(n2)和Ο(n3)称为多项式时间,而Ο(2n)和Ο(n!)称为指数时间。计算机科学家普遍认为前者(即多项式时间复杂度的算法)是有效算法,把这类问题称为P(Polynomial,多项式)类问题,而把后者(即指数时间复杂度的算法)称为NP(Non-Deterministic Polynomial, 非确定多项式)问题。
一般来说多项式级的复杂度是可以接受的,很多问题都有多项式级的解——也就是说,这样的问题,对于一个规模是n的输入,在n^k的时间内得到结果,称为P问题。有些问题要复杂些,没有多项式时间的解,但是可以在多项式时间里验证某个猜测是不是正确。比如问4294967297是不是质数?如果要直接入手的话,那么要把小于4294967297的平方根的所有素数都拿出来,看看能不能整除。还好欧拉告诉我们,这个数等于641和6700417的乘积,不是素数,很好验证的,顺便麻烦转告费马他的猜想不成立。大数分解、Hamilton回路之类的问题,都是可以多项式时间内验证一个“解”是否正确,这类问题叫做NP问题。
(4)在计算算法时间复杂度时有以下几个简单的程序分析法则:
(1).对于一些简单的输入输出语句或赋值语句,近似认为需要O(1)时间
(2).对于顺序结构,需要依次执行一系列语句所用的时间可采用大O下"求和法则"
求和法则:是指若算法的2个部分时间复杂度分别为 T1(n)=O(f(n))和 T2(n)=O(g(n)),则 T1(n)+T2(n)=O(max(f(n), g(n)))
特别地,若T1(m)=O(f(m)), T2(n)=O(g(n)),则 T1(m)+T2(n)=O(f(m) + g(n))
(3).对于选择结构,如if语句,它的主要时间耗费是在执行then字句或else字句所用的时间,需注意的是检验条件也需要O(1)时间
(4).对于循环结构,循环语句的运行时间主要体现在多次迭代中执行循环体以及检验循环条件的时间耗费,一般可用大O下"乘法法则"
乘法法则: 是指若算法的2个部分时间复杂度分别为 T1(n)=O(f(n))和 T2(n)=O(g(n)),则 T1*T2=O(f(n)*g(n))
(5).对于复杂的算法,可以将它分成几个容易估算的部分,然后利用求和法则和乘法法则技术整个算法的时间复杂度
另外还有以下2个运算法则:(1) 若g(n)=O(f(n)),则O(f(n))+ O(g(n))= O(f(n));(2) O(Cf(n)) = O(f(n)),其中C是一个正常数
(5)下面分别对几个常见的时间复杂度进行示例说明:
(1)、O(1)
Temp=i; i=j; j=temp;
以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。注意:如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。
(2)、O(n2)
2.1. 交换i和j的内容
sum=0; (一次)
for(i=1;i<=n;i++) (n+1次)
for(j=1;j<=n;j++) (n2次)
sum++; (n2次)
解:因为Θ(2n2+n+1)=n2(Θ即:去低阶项,去掉常数项,去掉高阶项的常参得到),所以T(n)= =O(n2);
2.2.
for (i=1;i<n;i++)
{
y=y+1; ①
for (j=0;j<=(2*n);j++)
x++; ②
}
解: 语句1的频度是n-1
语句2的频度是(n-1)*(2n+1)=2n2-n-1
f(n)=2n2-n-1+(n-1)=2n2-2;
又Θ(2n2-2)=n2
该程序的时间复杂度T(n)=O(n2).
一般情况下,对步进循环语句只需考虑循环体中语句的执行次数,忽略该语句中步长加1、终值判别、控制转移等成分,当有若干个循环语句时,算法的时间复杂度是由嵌套层数最多的循环语句中最内层语句的频度f(n)决定的。
(3)、O(n)
a=0;
b=1; ①
for (i=1;i<=n;i++) ②
{
s=a+b;③
b=a;④
a=s;⑤
}
解: 语句1的频度:2,
语句2的频度: n,
语句3的频度: n-1,
语句4的频度:n-1,
语句5的频度:n-1,
T(n)=2+n+3(n-1)=4n-1=O(n).
(4)、O(log2n)
i=1; ①
while (i<=n)
i=i*2; ②
解: 语句1的频度是1,
设语句2的频度是f(n), 则:2^f(n)<=n;f(n)<=log2n
取最大值f(n)=log2n,
T(n)=O(log2n )
(5)、O(n3)
for(i=0;i<n;i++)
{
for(j=0;j<i;j++)
{
for(k=0;k<j;k++)
x=x+2;
}
}
解:当i=m, j=k的时候,内层循环的次数为k当i=m时, j 可以取 0,1,...,m-1 , 所以这里最内循环共进行了0+1+...+m-1=(m-1)m/2次所以,i从0取到n, 则循环共进行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/6所以时间复杂度为O(n3).
(5)常用的算法的时间复杂度和空间复杂度
一个经验规则:其中c是一个常量,如果一个算法的复杂度为c 、 log2n 、n 、 n*log2n ,那么这个算法时间效率比较高 ,如果是2n ,3n ,n!,那么稍微大一些的n就会令这个算法不能动了,居于中间的几个则差强人意。
算法时间复杂度分析是一个很重要的问题,任何一个程序员都应该熟练掌握其概念和基本方法,而且要善于从数学层面上探寻其本质,才能准确理解其内涵。
2、算法的空间复杂度
类似于时间复杂度的讨论,一个算法的空间复杂度(Space Complexity)S(n)定义为该算法所耗费的存储空间,它也是问题规模n的函数。渐近空间复杂度也常常简称为空间复杂度。
空间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度。一个算法在计算机存储器上所占用的存储空间,包括存储算法本身所占用的存储空间,算法的输入输出数据所占用的存储空间和算法在运行过程中临时占用的存储空间这三个方面。算法的输入输出数据所占用的存储空间是由要解决的问题决定的,是通过参数表由调用函数传递而来的,它不随本算法的不同而改变。存储算法本身所占用的存储空间与算法书写的长短成正比,要压缩这方面的存储空间,就必须编写出较短的算法。算法在运行过程中临时占用的存储空间随算法的不同而异,有的算法只需要占用少量的临时工作单元,而且不随问题规模的大小而改变,我们称这种算法是“就地\"进行的,是节省存储的算法,如这一节介绍过的几个算法都是如此;有的算法需要占用的临时工作单元数与解决问题的规模n有关,它随着n的增大而增大,当n较大时,将占用较多的存储单元,例如将在第九章介绍的快速排序和归并排序算法就属于这种情况。
如当一个算法的空间复杂度为一个常量,即不随被处理数据量n的大小而改变时,可表示为O(1);当一个算法的空间复杂度与以2为底的n的对数成正比时,可表示为0(10g2n);当一个算法的空I司复杂度与n成线性比例关系时,可表示为0(n).若形参为数组,则只需要为它分配一个存储由实参传送来的一个地址指针的空间,即一个机器字长空间;若形参为引用方式,则也只需要为其分配存储一个地址的空间,用它来存储对应实参变量的地址,
‘贰’ 数据结构:排序算法总会提到的上界和下界是什么意思呀
简单来说,上界就是时间复杂度总不会超过这个数量级,下界就是时间复杂度总不会低于这个数量级。具体去wiki上看下O,Ω,Θ,o,ω的数学定义吧
‘叁’ 如何计算一个算法的时间复杂度
你这个问题是自己想出来的吧?
第一,你指的时间复杂度是大o表示法的复杂度,也就是一个上界,但不是上确界,所以就算你以一种方式中断排序过程,时间复杂度还是o(n*logn),假设排序过程还能执行的话。
第二,达到o(n*logn)的排序算法,以快速排序为例,快速排序不知道你看过没有,它不像选择排序或者冒泡排序那样,每一趟可以确定一直最大或者最小值,对于快速排序,每一趟排序后如果你删掉最后一个元素将导致整个算法失效。如果你要用这种删除元素方法的话,只能采用冒泡排序或者选择排序,时间复杂度是o(n^2)
所以,我猜想你是不是想做类似于在n个元素中寻找前k个最大者之类的事情(k=n-l)
如果是这样的话,有复杂度是o(n*logk)的算法,利用快速排序中的partition操作
经过partition后,pivot左边的序列sa都大于pivot右边的序列sb;
如果|sa|==k或者|sa|==k-1,则数组的前k个元素就是最大的前k个元素,算法终止;
如果|sa|
k,则从sa中寻找前k大的元素。
一次partition(arr,begin,end)操作的复杂度为end-begin,也就是o(n),最坏情况下一次partition操作只找到第1大的那个元素,则需要进行k次partition操作,总的复杂度为o(n*k)。平均情况下每次partition都把序列均分两半,需要logk次partition操作,总的复杂度为o(n*logk)。
由于k的上界是n,所以以n表示的总复杂度还是o(n*logn)
‘肆’ 算法时间复杂度怎么算
一、概念
时间复杂度是总运算次数表达式中受n的变化影响最大的那一项(不含系数)
比如:一般总运算次数表达式类似于这样:
a*2^n+b*n^3+c*n^2+d*n*lg(n)+e*n+f
a ! =0时,时间复杂度就是O(2^n);
a=0,b<>0 =>O(n^3);
a,b=0,c<>0 =>O(n^2)依此类推
eg:
(1) for(i=1;i<=n;i++) //循环了n*n次,当然是O(n^2)
for(j=1;j<=n;j++)
s++;
(2) for(i=1;i<=n;i++)//循环了(n+n-1+n-2+...+1)≈(n^2)/2,因为时间复杂度是不考虑系数的,所以也是O(n^2)
for(j=i;j<=n;j++)
s++;
(3) for(i=1;i<=n;i++)//循环了(1+2+3+...+n)≈(n^2)/2,当然也是O(n^2)
for(j=1;j<=i;j++)
s++;
(4) i=1;k=0;
while(i<=n-1){
k+=10*i; i++; }//循环了n-1≈n次,所以是O(n)(5) for(i=1;i<=n;i++)
for(j=1;j<=i;j++)
for(k=1;k<=j;k++)
x=x+1;
//循环了(1^2+2^2+3^2+...+n^2)=n(n+1)(2n+1)/6(这个公式要记住哦)≈(n^3)/3,不考虑系数,自然是O(n^3)
另外,在时间复杂度中,log(2,n)(以2为底)与lg(n)(以10为底)是等价的,因为对数换底公式:
log(a,b)=log(c,b)/log(c,a)
所以,log(2,n)=log(2,10)*lg(n),忽略掉系数,二者当然是等价的
二、计算方法1.一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。
一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。
2.一般情况下,算法的基本操作重复执行的次数是模块n的某一个函数f(n),因此,算法的时间复杂度记做:T(n)=O(f(n))。随着模块n的增大,算法执行的时间的增长率和f(n)的增长率成正比,所以f(n)越小,算法的时间复杂度越低,算法的效率越高。
在计算时间复杂度的时候,先找出算法的基本操作,然后根据相应的各语句确定它的执行次数,再找出T(n)的同数量级(它的同数量级有以下:1,Log2n ,n ,nLog2n ,n的平方,n的三次方,2的n次方,n!),找出后,f(n)=该数量级,若T(n)/f(n)求极限可得到一常数c,则时间复杂度T(n)=O(f(n))。
3.常见的时间复杂度
按数量级递增排列,常见的时间复杂度有:
常数阶O(1), 对数阶O(log2n), 线性阶O(n), 线性对数阶O(nlog2n), 平方阶O(n^2), 立方阶O(n^3),..., k次方阶O(n^k), 指数阶O(2^n) 。
其中,1.O(n),O(n^2), 立方阶O(n^3),..., k次方阶O(n^k) 为多项式阶时间复杂度,分别称为一阶时间复杂度,二阶时间复杂度。。。。2.O(2^n),指数阶时间复杂度,该种不实用3.对数阶O(log2n), 线性对数阶O(nlog2n),除了常数阶以外,该种效率最高
例:算法:
for(i=1;i<=n;++i)
{
for(j=1;j<=n;++j)
{
c[ i ][ j ]=0; //该步骤属于基本操作 执行次数:n^2
for(k=1;k<=n;++k)
c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //该步骤属于基本操作 执行次数:n^3
}
}
则有 T(n)= n^2+n^3,根据上面括号里的同数量级,我们可以确定 n^3为T(n)的同数量级
则有f(n)= n^3,然后根据T(n)/f(n)求极限可得到常数c
则该算法的 时间复杂度:T(n)=O(n^3)
四、
定义:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数
T(n)称为这一算法的“时间复杂性”。
当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂性”。
我们常用大O表示法表示时间复杂性,注意它是某一个算法的时间复杂性。大O表示只是说有上界,由定义如果f(n)=O(n),那显然成立f(n)=O(n^2),它给你一个上界,但并不是上确界,但人们在表示的时候一般都习惯表示前者。
此外,一个问题本身也有它的复杂性,如果某个算法的复杂性到达了这个问题复杂性的下界,那就称这样的算法是最佳算法。
“大O记法”:在这种描述中使用的基本参数是
n,即问题实例的规模,把复杂性或运行时间表达为n的函数。这里的“O”表示量级 (order),比如说“二分检索是 O(logn)的”,也就是说它需要“通过logn量级的步骤去检索一个规模为n的数组”记法 O ( f(n) )表示当 n增大时,运行时间至多将以正比于 f(n)的速度增长。
这种渐进估计对算法的理论分析和大致比较是非常有价值的,但在实践中细节也可能造成差异。例如,一个低附加代价的O(n2)算法在n较小的情况下可能比一个高附加代价的 O(nlogn)算法运行得更快。当然,随着n足够大以后,具有较慢上升函数的算法必然工作得更快。
O(1)
Temp=i;i=j;j=temp;
以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。
O(n^2)
2.1.
交换i和j的内容
sum=0;(一次)
for(i=1;i<=n;i++)(n次 )
for(j=1;j<=n;j++)
(n^2次 )
sum++;(n^2次 )
解:T(n)=2n^2+n+1 =O(n^2)
2.2.
for (i=1;i<n;i++)
{
y=y+1;①
for
(j=0;j<=(2*n);j++)
x++;②
}
解:
语句1的频度是n-1
语句2的频度是(n-1)*(2n+1)=2n^2-n-1
f(n)=2n^2-n-1+(n-1)=2n^2-2
该程序的时间复杂度T(n)=O(n^2).
O(n)
2.3.
a=0;
b=1;①
for
(i=1;i<=n;i++) ②
{
s=a+b;③
b=a;④
a=s;⑤
}
解:语句1的频度:2,
语句2的频度:
n,
语句3的频度: n-1,
语句4的频度:n-1,
语句5的频度:n-1,
T(n)=2+n+3(n-1)=4n-1=O(n).
O(log2n
)
2.4.
i=1;①
while (i<=n)
i=i*2; ②
解: 语句1的频度是1,
设语句2的频度是f(n),则:2^f(n)<=n;f(n)<=log2n
取最大值f(n)=
log2n,
T(n)=O(log2n )
O(n^3)
2.5.
for(i=0;i<n;i++)
{
for(j=0;j<i;j++)
{
for(k=0;k<j;k++)
x=x+2;
}
}
解:当i=m,
j=k的时候,内层循环的次数为k当i=m时, j 可以取 0,1,...,m-1 , 所以这里最内循环共进行了0+1+...+m-1=(m-1)m/2次所以,i从0取到n, 则循环共进行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/6所以时间复杂度为O(n^3).
我们还应该区分算法的最坏情况的行为和期望行为。如快速排序的最
坏情况运行时间是 O(n^2),但期望时间是 O(nlogn)。通过每次都仔细 地选择基准值,我们有可能把平方情况 (即O(n^2)情况)的概率减小到几乎等于 0。在实际中,精心实现的快速排序一般都能以 (O(nlogn)时间运行。
下面是一些常用的记法:
访问数组中的元素是常数时间操作,或说O(1)操作。一个算法如 果能在每个步骤去掉一半数据元素,如二分检索,通常它就取 O(logn)时间。用strcmp比较两个具有n个字符的串需要O(n)时间。常规的矩阵乘算法是O(n^3),因为算出每个元素都需要将n对
元素相乘并加到一起,所有元素的个数是n^2。
指数时间算法通常来源于需要求出所有可能结果。例如,n个元 素的集合共有2n个子集,所以要求出所有子集的算法将是O(2n)的。指数算法一般说来是太复杂了,除非n的值非常小,因为,在 这个问题中增加一个元素就导致运行时间加倍。不幸的是,确实有许多问题 (如着名的“巡回售货员问题” ),到目前为止找到的算法都是指数的。如果我们真的遇到这种情况,通常应该用寻找近似最佳结果的算法替代之。
‘伍’ 如何计算算法复杂度
问题一:程序中的时间复杂度是怎么计算的? 算法复杂度的介绍,见网络:
ke./view/7527
时间复杂度
时间频度
一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。
计算方法
1. 一般情况下,算法的基本操作重复执行的次数是模块n的某一个函数f(n),因此,算法的时间复杂度记做:T(n)=O(f(n))
分析:随着模块n的增大,算法执行的时间的增长率和f(n)的增长率成正比,所以f(n)越小,算法的时间复杂度越低,算法的效率越高。
2. 在计算时间复杂度的时候,先找出算法的基本操作,然后根据相应的各语句确定它的执行次数,再找出T(n)的同数量级(它的同数量级有以下:1,Log2n ,n ,nLog2n ,n的平方,n的三次方,2的n次方,n!),找出后,f(n)=该数量级,若T(n)/f(n)求极限可得到一常数c,则时间复杂度T(n)=O(f(n))
例:算法:
for(i=1;i>
问题二:如何计算算法的时间复杂度 求解算法的时间复杂度的具体步骤是:⑴找出算法中的基本语句;算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。⑵计算基本语句的执行次数的数量级;只需计算基本语句执行次数的数量级,这就意味着只要保证基本语句执行次数的函数中的最高次幂正确即可,可以忽略所有低次幂和最高次幂的系数。这样能够简化算法分析,并且使注意力集中在最重要的一点上:增长率。⑶用大Ο记号表示算法的时间性能。将基本语句执行次数的数量级放入大Ο记号中。如果算法中包含嵌套的循环,则基本语句通常是最内层的循环体,如果算法中包含并列的循环,则将并列循环的时间复杂度相加。例如:for(i=1;i 问题三:C语言算法的时间复杂度如何计算啊? 看看这个 每个循环都和上一层循环的参数有关。 所以要用地推公式: 设i(n)表示第一层循环的i为n时的循环次数,注意到他的下一层循环次数刚好就是n,分别是0,1,2...n-1 所以,把每一层循环设一个函数分别为:j(n),k(n),t(n) 则有 i(n)=j(0)+...+j(n-1) j(n)=k(0)+...+k(n-1) k(n)=t(0)+...+t(n-1) i(0)=j(0)=k(0)=0 t(n)=1 而总循环数是i(0)+i(1)...+i(n-1) 可以根据递推条件得出准确值 所以算法复杂度是O(i(0)+i(1)...+i(n-1))
记得采纳啊
问题四:如何计算算法的时间复杂度和空间复杂度 是说明一个程序根据其数据n的规模大小 所使用的大致时间和空间
说白了 就是表示 如果随着n的增长 时间或空间会以什么样的方式进行增长
例
for(int i = 0; i 问题五:一个算法的时间复杂度是什么函数? 关于n的函数,n是问题的规模
问题六:请问递归算法的时间复杂度如何计算呢? 递归算法的时间复杂度分析 收藏
在算法分析中,当一个算法中包含递归调用时,其时间复杂度的分析会转化为一个递归方程求解。实际上,这个问题是数学上求解渐近阶的问题,而递归方程的形式多种多样,其求解方法也是不一而足,比较常用的有以下四种方法:
(1)代入法(Substitution Method)
代入法的基本步骤是先推测递归方程的显式解,然后用数学归纳法来验证该解是否合理。
(2)迭代法(Iteration Method)
迭代法的基本步骤是迭代地展开递归方程的右端,使之成为一个非递归的和式,然后通过对和式的估计来达到对方程左端即方程的解的估计。
(3)套用公式法(Master Method)
这个方法针对形如“T(n) = aT(n/b) + f(n)”的递归方程。这种递归方程是分治法的时间复杂性所满足的递归关系,即一个规模为n的问题被分成规模均为n/b的a个子问题,递归地求解这a个子问题,然后通过对这a个子间题的解的综合,得到原问题的解。
(4)差分方程法(Difference Formula Method)
可以将某些递归方程看成差分方程,通过解差分方程的方法来解递归方程,然后对解作出渐近阶估计。
下面就以上方法给出一些例子说明。
一、代入法
大整数乘法计算时间的递归方程为:T(n) = 4T(n/2) + O(n),其中T(1) = O(1),我们猜测一个解T(n) = O(n2 ),根据符号O的定义,对n>n0,有T(n) >
问题七:如何计算时间复杂度 如何计算时间复杂度
定义:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数 T(n)称为这一算法的“时间复杂性”。
当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂性”。
我们常用大O表示法表示时间复杂性,注意它是某一个算法的时间复杂性。大O表示只是说有上界,由定义如果f(n)=O(n),那显然成立f(n)=O(n^2),它给你一个上界,但并不是上确界,但人们在表示的时候一般都习惯表示前者。
此外,一个问题本身也有它的复杂性,如果某个算法的复杂性到达了这个问题复杂性的下界,那就称这样的算法是最佳算法。
“大 O记法”:在这种描述中使用的基本参数是 n,即问题实例的规模,把复杂性或运行时间表达为n的函数。这里的“O”表示量级 (order),比如说“二分检索是 O(logn)的”,也就是说它需要“通过logn量级的步骤去检索一个规模为n的数组”记法 O ( f(n) )表示当 n增大时,运行时间至多将以正比于 f(n)的速度增长。
这种渐进估计对算法的理论分析和大致比较是非常有价值的,但在实践中细节也可能造成差异。例如,一个低附加代价的O(n2)算法在n较小的情况下可能比一个高附加代价的 O(nlogn)算法运行得更快。当然,随着n足够大以后,具有较慢上升函数的算法必然工作得更快。
O(1)
Temp=i;i=j;j=temp;
以 上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时 间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。
O(n^2)
2.1. 交换i和j的内容
sum=0; (一次)
for(i=1;i>
问题八:算法的时间复杂度 以下是考研时常用的计算方法,实际上最简单的方法采用多项式最大阶的方法,如:
f(n)=a1*n^m+a2*n^(m-1)+.......an-1*n+an
的时间复杂度为:T(f(n))=O(n^m)
采用时间步法,找一个函数g(n),找一个自然数n0,使f(n)T(n)=O(n)
(2)6n^2-12n+1=12)=7n^2=7*g(n)==>T(n)=O(n^2)
(3)n(n+1)(n+2)/6=n0=2时)=n0=4)=2*g(n)===>T(n)=O(n^3)
(4)2^(n+1)+100nT(n)=O(2^n)
‘陆’ 怎样通过计算复杂度来估计n的上界。如:T(n)=O(n^3),n的上界是多少
万有引力定律:
(law of gravitation)物体间相互作用的一条定律,1687年为牛顿所发现。任何物体之间都有相互吸引力,这个力的大小与各个物体的质量成正比例,而与它们之间的距离的平方成反比。如果用m1、m2表示两个物体的质量,r表示它们间的距离,则物体间相互吸引力为F=(Gm1m2)/r2,G称为万有引力常数。
万有引力定律是牛顿在1687年出版的《自然哲学的数学原理》一书中首先提出的。牛顿利用万有引力定律不仅说明了行星运动规律,而且还指出木星、土星的卫星围绕行星也有同样的运动规律。他认为月球除了受到地球的引力外,还受到太阳的引力,从而解释了月球运动中早已发现的二均差、出差等。另外,他还解释了慧星的运动轨道和地球上的潮汐现象。根据万有引力定律成功地预言并发现了海王星。万有引力定律出现后,才正式把研究天体的运动建立在力学理论的基础上,从而创立了天体力学。
简单的说,质量越大的东西产生的引力越大,地球的质量产生的引力足够把地球上的东西全部抓牢。
不但地球对它周围的物体有吸引作用,而且任何两个物体之间都存在这种吸引作用。物体之间的这种吸引作用普遍存在于宇宙万物之间,称为万有引力。
万有引力是由于物体具有质量而在物体之间产生的一种相互作用。它的大小和物体的质量以及两个物体之间的距离有关。物体的质量越大,它们之间的万有引力就越大;物体之间的距离越远,它们之间的万有引力就越小。
两个可看作质点的物体之间的万有引力,可以用以下公式计算:F=GmM/r2,即 万有引力等于重力常量乘以两物体质量的乘积除以它们距离的平方。其中G代表引力常量,其值约为6.67×10的负11次方单位 N·m2 /kg2。为英国科学家 卡文迪许通过扭秤实验测得。
两个通常物体之间的万有引力极其微小,我们察觉不到它,可以不予考虑。比如,两个质量都是60千克的人,相距0.5米,他们之间的万有引力还不足百万分之一牛顿,而一只蚂蚁拖动细草梗的力竟是这个引力的1000倍!
但是,天体系统中,由于天体的质量和大,万有引力就起着决定性的作用。在天体中质量还算很小的地球,对其他的物体的万有引力已经具有巨大的影响,它把人类、大气和所有地面物体束缚在地球上,它使月球和人造地球卫星绕地球旋转而不离去。
重力,就是由于地面附近的物体受到地球的万有引力而产生的。
任意两个物体或两个粒子间的与其质量乘积相关的吸引力。自然界中最普遍的力。简称引力,有时也称重力。在粒子物理学中则称引力相互作用和强力、弱力 、电磁力合称4种基本相互作用。引力是其中最弱的一种,两个质子间的万有引力只有它们间的电磁力的1/1035 ,质子受地球的引力也只有它在一个不强的电场1000伏/米的电磁力的1/1010。因此研究粒子间的作用或粒子 在电子显微镜和加速器中运动时,都不考虑万有引力的作用 。一般物体之间的引力也是很小的,例如两个直径为 1米的铁球 ,紧靠在一起时 , 引力也只有2.83×10-4牛顿,相当于0.03克的一小滴水的重量 。但地球的质量很大,这两个铁球分别受到4×104牛顿的地球引力 。所以研究物体在地球引力场中的运动时,通常都不考虑周围其他物体的引力。天体如太阳和地球的质量都很大,乘积就更大,巨大的引力就能使庞然大物绕太阳转动。引力就成了支配天体运动的唯一的一种力。恒星的形成,在高温状态下不弥散反而逐渐收缩,最后坍缩为白矮星、中子星和黑洞 , 也都是由于引力的作用,因此引力也是促使天体演化的重要因素。
现代天文学理论认为,太阳系是由所谓的原始星云形成的,原始星云是一大片十分稀薄的气体云,50亿年前受某种扰动影响,在引力的作用下向中心收缩。经过漫长时期的演化,中心部分物质的密度越来越大,温度也越来越高,终于达到可以引发热核反应的程度,而演变成了太阳。在太阳周围的残余气体则逐渐形成一个旋转的盘状气体层,经过收缩、碰撞、捕获、积聚等过程,在气体层中逐步聚集成固体颗粒、微行星、原始行星,最后形成一个个独立的大行星和小行星等太阳系天体。
太阳系的几乎所有天体包括小行星都自转,而且是按照右手定则的规律自转,所有或者说绝大多数天体的公转也都是右手定则。为什么呢?太阳系的前身是一团密云,受某种力量驱使,使它彼此相吸,这个吸积过程,使密度稀的逐渐变大,这就加速吸积过程。原始太阳星云中的质点最初处在混沌状,横冲直闯,逐渐把无序状态变成有序状态,一方面,向心吸积聚变为太阳,另外,就使得这团气体逐渐向扁平状发展,发展的过程中,势能变成动能,最终整个转起来了。开始转时,有这么转的,有那么转的,在某一个方向占上风之后,都变成了一个方向,这个方向就是现在发现的右手定则,也许有其他太阳系是左手定则,但在我们这个太阳系是右手定则。地球自转的能量来源就是由物质势能最后变成动能所致,最终是地球一方面公转,一方面自转。
-------------------------------------
3点一线是为潮汐
潮汐
由于日、月引潮力的作用,使地球的岩石圈、水圈和大气圈中分别产生的周期性的运动和变化的总称。固体地球在日、月引潮力作用下引起的弹性—塑性形变,称固体潮汐,简称固体潮或地潮;海水在日、月引潮力作用下引起的海面周期性的升降、涨落与进退,称海洋潮汐,简称海潮;大气各要素(如气压场、大气风场、地球磁场等)受引潮力的作用而产生的周期性变化(如8、12、24小时)称大气潮汐,简称气潮。其中由太阳引起的大气潮汐称太阳潮,由月球引起的称太阴潮。因月球距地球比太阳近,月球与太阳引潮力之比为11:5,对海洋而言,太阴潮比太阳潮显着。地潮、海潮和气潮的原动力都是日、月对地球各处引力不同而引起的,三者之间互有影响。大洋底部地壳的弹性—塑性潮汐形变,会引起相应的海潮,即对海潮来说,存在着地潮效应的影响;而海潮引起的海水质量的迁移,改变着地壳所承受的负载,使地壳发生可复的变曲。气潮在海潮之上,它作用于海面上引起其附加的振动,使海潮的变化更趋复杂。作为完整的潮汐科学,其研究对象应将地潮、海潮和气潮作为一个统一的整体,但由于海潮现象十分明显,且与人们的生活、经济活动、交通运输等关系密切,因而习惯上将潮汐(tide)一词狭义理解为海洋潮汐。
‘柒’ 算法中上界和下界分别是指什么
上界与下界的定义和数学中是相通的,比如一个变量x,并且有x属于a到b区间,这个区间就表示上界是a,下界是b,对于变量x的取值范围来说,最大不超过b,最小不小于a。
同样对于一个算法,上界就是对于一种资源的限制最大不大于的值,下界就是对于这种资源的限制最小不小于的值。
‘捌’ 求算法上界的问题
如果有lim(n->∞) T(n)/f(n)=常数C>0,则称算法T(n)的时间复杂度为O(f(n))
对于T(n)=2^n+n^2,显然有lim(n->∞) (2^n+n^2)/(2^n)=1,因此我们说这个算法的时间复杂度是O(2^n)。
‘玖’ 怎么求算法的时间复杂性的上界和下界
简单一点,忽略诸如程序在循环变量上的开销,只考虑循环体
复杂度是通过数运算次数直接数出来的,要知道循环多少次,以及每次循环的工作量
(1)循环n次,每次两步加法两步赋值,简单一点讲就是每次循环工作量都是常数,所以复杂度就是Θ(n)(既是上界也是下界)
对于(2)而言,n=n-1下降比较慢,n=n/2下降比较快,同样每次循环的工作量都是常数,只要看循环次数,所以从前者去统计上界,从后者统计下界
最少的情况来自n=2^k的形式,要循环k步,复杂度下界是Ω(log n)
循环次数比较多的情况是反复出现n=n-1运算的情况,但注意一旦执行该运算之后n一定变成偶数,所以最坏情况是n=n-1和n=n/2交替出现,此时循环次数不超过2log_2 n,复杂度上界是O(log n)
合并起来总体的复杂度还是Θ(n)