当前位置:首页 » 操作系统 » 天线的算法

天线的算法

发布时间: 2023-05-31 04:26:23

A. 阵列天线与智能天线原理

19021110368 余昆

1. 阵列天线

阵列天线是一类由不少于两个天线单元规则或随机排列并通过适当激励获得预定辐射特性的特殊天线。阵列天线的辐射电磁场是组成该天线阵各单元辐射场的总和—矢量和由于各单元的位置和馈电电流的振幅和相位均可以独立调整,这就使阵列天线具有各种不同的功能,这些功能是单个天线无法实现的。方向图原理:对于单元数很多的天线阵,用解析方法计算阵的总方向图相当繁杂。假如一个多元天线阵能分解为几个相同的子阵,则可利用方向图相乘原理比较简单地求出天线阵的总方向图。

一个可分解的多元天线阵的方向图,等于子阵的方向图乘上以子阵为单元的天线阵的方向图。这就是方向图相乘原理。一个复杂的天线阵可考虑多次分解,即先分解成大的子阵,这些子阵再分解为较小的子阵,直至得到单元数很少的简单子阵为止,然后再利用方向图相乘原理求得阵的总方向图。这种情况适应于单元是无方向性的条件,当单元以相同的取向排列并自身具有非均匀辐射的方向图时,则天线阵的总方向图应等于单元的方向图乘以阵的方向图。

2.智能天线

e( k )=d( k )-w H x( k )利用最小均方误差法(MSE)求出

E[|e|2]=E[|d|2]-2w H r+w H Rxxw

相关性r定义为r=E[d*.x]=E[d*.(x s +x i +n)]

Rxx=E[xx H ]=Rss+R uu

Rss=E[xsxs H ]

R uu =R ii +R nn

对任意权值,可以求均方误差关于权向量的梯度,由维纳-霍普夫方程表示为

▽ w (E[|e|2])=2Rxxw-2 r

如果令参考信号d等于期望信号s,且s与所有干扰源无关,则可化简相关性r,得r=E[s*.x]=S.a0

其中S=E[|s|2],最优权值可表示为

WMSE=SR xx -1a0

各用户的波达方向的估计算法主要有延迟-相加法、capon法、MUSIC法等。运用矩阵定义

X=AS+N

其中S为波前信号,N为测量噪声,X为天线阵元的输出信号。式中A为阵元对信号源的响应函数。具体为

X=[ x 1(t)  x 2(t) …  x m(t)] T

S=[s1(t) s2(t) … sD(t)] T

N=[n1(t) n2(t) … n M (t)] T

延迟-相加法(经典波束形成法)的输出功率与达波方向DoA的关系为

P cbf (q)=w H R uu w=a H (q)R uu a(q)

Capon法的阵列输出功率与波达方向DoA的关系为

MUSIC法的阵列空间谱为

其中V为噪声特征向量矩阵。

B. 手机天线长度的计算方法

取手机通信频率为900MHz,根据公司入=c*f.可计算出手机信号波长为:0.33米。由于天线长度和电磁波长度成正比关系,经验值天线长度为波长的四分之一时效果最好,所以天线长度0.083米=83mm.

C. 天线的原理与制作

作为电磁换能元件,天线在整个无线电通信系统中位置十分重要,质量好坏直接影响着收发信距离的远近和通联效果,可以说没有了天线也就没有了无线电通信。作为一款经典的定向天线,八木天线在HF、VHF以及UHF波段应用十分广泛,它全称为“八木/宇田天线”,英文名YAGI,是由上世纪二十年代日本东北帝国大学的电机工程学教授八木秀次,在与他的学生宇田新太郎研究短波束时发明的。相对于基本的半波对称振子或者折合振子天线,八木天线增益高、方向性强、抗干扰、作用距离远,并且构造简单、材料易得、价格低廉、挡风面小、轻巧牢固、架设方便。通常八木天线由一个激励振子(也称主振子)、一个反射振子(又称反射器)和若干个引向振子(又称引向器)组成,相比之下反射器最长,位于紧邻主振子的一侧,引向器都较短,并悉数位于主振子的另一侧,全部振子加起来的数目即为天线的单元数,譬如一副五单元的八木天线就包括一个主振子、一个反射器和三个引向器,结构如图1所示。主振子直接与馈电系统相连,属于有源振子,反射器和引向器都属无源振子,所有振子均处于同一个平面内,并按照一定间距平行固定在一根横贯各振子中心的金属横梁上。

八木天线定向工作的原理,可依据电磁学理论进行详尽地数学推导,但是比较繁琐复杂,普通读者也不易理解,这里只做定性的简单分析:我们知道,与天线电气指标密切相关的是波长λ,长度略长于λ/4整数倍的导线呈电感性,长度略短于λ/4整数倍的导线呈电容性。由于主振子L采用长约λ/2的半波对称振子或半波折合振子,在中心频点工作时处于谐振状态,阻抗呈现为纯电阻,而反射器A比主振子略长,呈现感性,假设两者间距a为λ/4,以接收状态为例,从天线前方某点过来的电磁波将先到达主振子,并产生感应电动势ε1和感应电流I1,再经λ/4的距离后电磁波方到达反射器,产生感应电动势ε2和感应电流I2,因空间上相差λ/4的路程,故ε2比ε1滞后90°,又因反射器呈感性I2比ε2滞后90°,所以I2比ε1滞后180°,反射器感应电流I2产生辐射到达主振子形成的磁场H2又比I2滞后90°,根据电磁感应定律H2在主振子上产生的感应电动势ε1'比H2滞后90°,也就是ε1'比ε1滞后360°,即反射器在主振子产生的感应电动势ε1'与电磁信号源直接产生的感应电动势ε1是同相的,天线输出电压为两者之和。同理可推导出,对天线后方某点来的信号,反射器在主振子产生的感应电动势与信号直接产生的感应电动势是反相的,起到了抵消输出的作用。而引向器B、C、D等都比主振子略短,阻抗呈容性,假定振子间距b、c、d也等于λ/4,按上述方法也可推出引向器对前方过来的信号起着增强天线输出的作用。综上所述,反射器能够有效消除天线方向图后瓣,并和引向器共同增强天线对前方信号的灵敏度,使天线具有了强方向性,提高了天线增益。对于发射状态,推导过程亦然。实际制作过程中,通过缜密设计和适当调整各振子的长度及其间距,就能获得工作在不同中心频点、具有一定带宽、一定阻抗值和较好端射方向图的八木天线。

对于设计调整一副天线,我们总希望它能够有较高的效率和增益,足够的带宽,以及较强的信号选择和抗干扰能力,同时与馈线阻抗尽量匹配,竭力降低驻波比和减小信号损耗。然而天线的各项几何参数对其电气性能都有影响,并且往往彼此矛盾、相互牵制,设计调整时不能顾此失彼,要结合实际的用途综合考虑,分清主次,必要时还得牺牲一些次要的性能指标。由于八木天线的增益与轴向长度(从反射器到最末引向器的距离)、单元数目、振子长度及间距密切相关,轴向越长,单元数实际也就是引向器越多,方向越尖锐,增益越高,作用距离越远,但超过四个引向器后,改善效果就不太明显了,而体积、重量、制作成本则大幅增加,对材料强度要求也更严格,同时导致工作频带更窄。一般情况下采用 6 ~ 12 单元就足够了,天线增益可达 10~15 dB,对于高增益的要求,可采用天线阵的办法加以解决。引向器的长度通常为(0.41~0.46)λ,单元数愈多,引向器的最佳长度也就愈短,如果要求工作频段较宽,引向器的长度也应取得短些。引向器的间距一般取(0.15~0.4)λ,大于0.4λ后天线增益将迅速下降,但第一引向器B和主振子的间距应略小于其它间距,例如取b≈0.1λ时,增益将会有所提高。

一般来说,反射器A的长度及与主振子的间距对天线增益影响不大,而对前后辐射比和输入阻抗却有较大的影响,反射器长度通常为(0.5~0.55)λ,与主振子的间距为(0.15~0.23)λ。反射器较长或间距较小可有效地抑制后向辐射,但输入阻抗较低,难于和馈线良好匹配,因而要采取折衷措施。对某些前后辐射比要求较高的使用场合,可以在与天线平面垂直方向上上下安装两个反射器,或者干脆采用反射网的形式。有时为了着重改善天线带宽的低频端特性,还会在主振子的后面不同距离处排列两个长度不等的反射器,其中较短的要离主振子近些。若想改善天线的高频端特性,可适当调短引向器的长度。多元八木天线中引向器的长度和间距可以相等也可不等,从而分成均匀结构和不均匀结构两种形式,不均匀结构的引向器,离主振子越远长度越短,间隔越大,使得工作频带向高频端方向拓展,调整起来相对灵活机动。天线增益越高,带宽也会越窄,有时为展宽频带,还可采用两个激励振子,称为双激,或者直接选用复合式引向天线。考虑到八木天线的各项电气指标在频带低端比较稳定,而高端变化较快,所以最初设计时频率通常要稍高于中心频率。另外振子所用金属管材越粗,其特性阻抗越低,天线带宽也就越大,振子直径通常为(1/100~1/150)λ,当然实际选择时还要考虑天线的整体机械特性。振子的粗细还会影响振子的实用最佳长度,这是因为电波在金属中行进的速度与真空中不尽相同,实际制作长度都要在理论值上减去一个缩短系数,而导线越粗缩短系数越大,振子长度越小,对阻抗特性也造成一定影响。

输入阻抗是天线的一个重要特性指标,它主要由有源振子固有的自阻抗及与其邻近的几个无源振子间的互阻抗来决定的。远处的引向器,由于和主振子耦合较弱,互阻抗可忽略不计。通常主振子有半波对称振子和半波折合振子两种形式,单独谐振状态下,输入阻抗都为纯电阻,半波对称振子的Zin = 73.1 欧,标称 75 欧,半波折合振子的Zin = 292.4 欧,标称300欧,是半波对称振子的四倍。而加了引向器、反射器无源振子后,由于相互之间的电磁耦合,阻抗关系变得比较复杂,输入阻抗显着降低,并且八木天线各单元间距越小阻抗也越低。为了增大输入阻抗,提高天线效率,故主振子多选用半波折合振子的形式,这样也能同时增加天线的带宽。只要适当选择折合振子的长度,两导体的直径比及其间距,并结合调整反射器及附近几个引向振子的尺寸,就可以使输入阻抗变换到等于或接近馈线特性阻抗的数值。尤其值得一提的是,虽然无线电通信机天线端口及采用的同轴电缆特性阻抗都设计成50Ω,而广播电视接收和传输同轴电缆特性阻抗为75Ω,但是对于任一天线,人们总可以通过阻抗调试,在要求频率范围内,使天馈线良好匹配,获得满意的驻波比,所以实用中并不十分注意八木天线输入阻抗的具体数值,而主要以馈线上的驻波比为依据进行尺寸选择或试验调整。如果选用同轴电缆馈电,为保证天线的对称性及与馈线的阻抗匹配,就必须在馈线和天线接口处加入“平衡—不平衡”转换器,例如半波U型环式匹配器、变压器式匹配器等,否则高频信号在传输中衰减严重。因半波U型环式匹配器只需一段λ/2的同轴电缆,结构简单,应用广泛,具体接线方法如图2所示。

由于引向器阵列对增益、后向辐射、输入阻抗等都有影响,故实验调整是八木天线投入使用前必不可少的一个步骤。调试时注意一定要把天线架起来,离开地面高度两、三米以上,以免影响天线的阻抗和仰角。架设八木天线时,振子所在的天线平面既可以和大地平行又可以垂直,只要收、发双方的天线保持相同姿势就行,平行则辐射水平极化波,垂直则辐射垂直极化波,因有足够的隔离度,还可共杆架设两副相互垂直的引向天线,使用起来十分方便。为避免相位关系更加复杂化,降低调整难度,通常折合振子平面要与横梁垂直。因为各振子长度都约为半个波长,振子中点恰好位于电波感应信号电压的零点,所以振子的中点能用金属螺栓和铝质横梁直接固定,不必绝缘,这样还能方便地泄放感应静电。若主振子采用半波对称振子,与馈线相接的地方必须和横梁保持良好绝缘,若采用半波折合振子,中点仍与横梁相通。金属横梁与端射方向上的电场极化方向垂直,因此对天线辐射场不会产生显着的影响。另外需要注意的是,由于天线一般架设在楼顶、阳台等室外环境,受风吹日晒雨淋后接口容易氧化生锈,影响信号的传输和天线的匹配,使收发效果变差,需用防水胶带提前处理,同时还应注意防雷。

虽然说八木天线结构并不复杂,但是若想做好做精也不是一件轻而易举的事,如果自行设计没有足够的把握,可以完全仿照工程理论书籍给出的尺寸,或者借助于一些现成的设计软件,如国外的yagi(下载地址 http://www.ve3sqb.com/)等,只需直接输入频率、单元数和振子直径,就能得到各个单元的最佳尺寸和位置,如图3所示,确保你也能制造出一副优秀的YAGI。理论归理论,只有实践才能出真知,怎么样,还不抓紧动手试一试!
八木天线分配器(双排定向天线制作)

许多人在成功的制作完定向天线后, 其野心也越来越大, 因为既然一个阵列的定向天线已经成功, 何不做做双排的定向天线呢? 没错! 我们就是要本着一颗庞大的野心, 朝着想要达到的目标前进, 这样我们的技术才会提升, 这也是业馀无线电玩家的精神.

只要你完成了前一个单元的实验144MHZ 九节八木天线, 那你要制作一个双排定向天线, 绝不是一件难事. 只要你有了分配器, 想要做几排定向天线都没问题.

两排定向天线合并, 中间一定要有一个分配器, 而两排定向天线的距离大约是天线本身主杆的80%~90%长, 而且分配器两端75欧姆的同轴电缆线要等长.
注意事项:

分配器两端的长度最好是奇数个电子上的四分之一波长, 当你算出物理上的四分之一波长天线长度(也就是第一单元所讲的四分之一波长的算法), 还要用此长度算出电子上的四分之一波长的长度, 来运用在75欧姆同轴电缆线的长度.

例如:天线频率144MHZ, 它的四分之一波长为 0.5 公尺(物理上的), 而我使用的75欧姆同轴电缆线规格为 RG-59, 而RG-59的速率因素为 0.66 (75欧姆同轴电缆线规格有很多种,其速率因素也不同, 请参考出厂规格说明), 所以我还要将刚刚算出的 0.5 公尺再乘上 0.66 , 所以求出在电子上的四分之一波长的长度为0.33公尺. 假设我所需要的电缆线从天线的供电点到T型接头的长度为1.98公尺, 这个长度刚好是6个电子的四分之一波长, 是个偶数, 而我们不要偶数倍, 我们要奇数倍, 所以我们把长度加到2.3公尺(这个长度是7个电子的四分之一波长), 让它成为奇数倍, 这样的效率才是最好的.

D. 什么是最小均方(LMS)算法

全称 Least mean square 算法。中文是最小均方算法。
感知器和自适应线性元件在历史上几乎是同时提出的,并且两者在对权值的调整的算法非常相似。它们都是基于纠错学习规则的学习算法。感知器算法存在如下问题:不能推广到一般的前向网络中;函数不是线性可分时,得不出任何结果。而由美国斯坦福大学的Widrow和Hoff在研究自适应理论时提出的LMS算法,由于其容易实现而很快得到了广泛应用,成为自适应滤波的标准算法。
LMS算法步骤:
1,、设置变量和参量:
X(n)为输入向量,或称为训练样本
W(n)为权值向量
b(n)为偏差
d(n)为期望输出
y(n)为实际输出
η为学习速率
n为迭代次数
2、初始化,赋给w(0)各一个较小的随机非零值,令n=0
3、对于一组输入样本x(n)和对应的期望输出d,计算
e(n)=d(n)-X^T(n)W(n)
W(n+1)=W(n)+ηX(n)e(n)
4、判断是否满足条件,若满足算法结束,若否n增加1,转入第3步继续执行。

E. 智能天线的实现原理

智能天线技术前身是一种波束成形(Beamforming)技术。波束成形技术是发送方在获取一定的当前带指时刻当前位置发送方和接收方之间的信道信息,调整信号发送的参数,使得射频能量向接收方所处位置集中,从而使得接收方接收到的信号质量较好,最终能保持较高的吞吐量。该技术又分为芯片方式(On-Chip) 和硬件智能天线方式 (On-Antenna)的两种。
智能天线的原理是将无线电的信号导向具体的方向,产生空间定向波束,使天线主波束对准用户信号到达方向,旁瓣或零陷对准干扰信号到达方向,达到充分高效利用移动用户信号并删除或抑制干扰信号的目的。同时,智能天线技术利用各个移动用户间信号空间特征的差异,通过阵列天线技术在同一信道上接收和发射多个移动用户信号而不拦尘发生相互干扰,使无线电频谱的利用和信号的传输更为有效。在不增加系统复杂度的情况下,使用智能天线可满足服务质量和网络扩容的需要。
智能天线系统的核心是智能算法,智能算法决定瞬时响应速率和电路实现的复杂程度,因此重要的是选择较好算法实现波束的智能控制。通过算法自动调整加权值得到所需空间和频率滤波器的作用。已提出很多着名算法,概括地讲有非盲算法和盲算法两大类。非盲算法是指需借助参考信号(导频序列或导频信道)的算法,此时,接收端知道发送的是什么,进行算法处理时要么先确定信道响应再按一定准则(比如最优的迫零准则zero forcing)确定各加权值,要么直接按一定的准则确定或逐渐调整权值,以使智能天线输出与已知输入最大相关,常用的相关准则有SE(最小均方误差)、LS(最小均方)和LS(最小二乘)等。盲算法则无需发端传送已知的导频信号,判决反馈算法(Decision Feedback)是一种较特殊的算法,接收端自己简行禅估计发送的信号并以此为参考信号进行上述处理,但需注意的是应确保判决信号与实际传送的信号间有较小差错。

热点内容
scratch少儿编程课程 发布:2025-04-16 17:11:44 浏览:639
荣耀x10从哪里设置密码 发布:2025-04-16 17:11:43 浏览:368
java从入门到精通视频 发布:2025-04-16 17:11:43 浏览:84
php微信接口教程 发布:2025-04-16 17:07:30 浏览:310
android实现阴影 发布:2025-04-16 16:50:08 浏览:793
粉笔直播课缓存 发布:2025-04-16 16:31:21 浏览:344
机顶盒都有什么配置 发布:2025-04-16 16:24:37 浏览:212
编写手游反编译都需要学习什么 发布:2025-04-16 16:19:36 浏览:812
proteus编译文件位置 发布:2025-04-16 16:18:44 浏览:366
土压缩的本质 发布:2025-04-16 16:13:21 浏览:592