当前位置:首页 » 操作系统 » ambari源码

ambari源码

发布时间: 2023-05-31 00:57:14

1. ambari 这个能二次开发成中文版吗

可以的,两种方法
(1)桥腊迅你可以修改源码中的ambari-web---->app---->messages.js,将敏此messages.js 中对应的地方翻译成中文即可。
(2)你可以使用局档ftp 工具进入将你安装好的ambari服务的/usr/lib/ambari-server/web/javascript/app.js文件下载到你本地。使用编辑工具打开,然后找到Em.I18n.translations 这个节点,然后翻译对应的英文。大概在58237行的地方,然后将文件替换回去,重启ambari

2. 大数据分析一般用什么工具分析

今天就我们用过的几款大数据分析工具简单总结一下,与大家分享。

1、Tableau

这个号称敏捷BI的扛把子,魔力象限常年位于领导者象限,界面清爽、功能确实很强大,实至名归。将数据拖入相关区域,自动出图,图形展示丰富,交互性较好。图形自定义功能强大,各种图形参数配置、自定义设置可以灵活设置,具备较强的数据处理和计算能力,可视化分析、交互式分析体验良好。确实是一款功能强大、全面的数据可视化分析工具。新版本也集成了很多高级分析功能,分析更强大。但是基于图表、仪表板、故事报告的逻辑,完成一个复杂的业务汇报,大量的图表、仪表板组合很费事。给领导汇报的PPT需要先一个个截图,然后再放到PPT里面。作为一个数据分析工具是合格的,但是在企业级这种应用汇报中有点局限。

2、PowerBI

PowerBI是盖茨大佬推出的工具,我们也兴奋的开始试用,确实完全不同于Tableau的操作逻辑,更符合我们普通数据分析小白的需求,操作和Excel、PPT类似,功能模块划分清晰,上手真的超级快,图形丰富度和灵活性也是很不错。但是说实话,毕竟刚推出,系统BUG很多,可视化分析的功能也比较简单。虽然有很多复杂的数据处理功能,但是那是需要有对Excel函数深入理解应用的基础的,所以要支持复杂的业务分析还需要一定基础。不过版本更新倒是很快,可以等等新版本。

3、Qlik

和Tableau齐名的数据可视化分析工具,QlikView在业界也享有很高的声誉。不过Qlik Seanse产品系列才在大陆市场有比较大的推广和应用。真的是一股清流,界面简洁、流程清晰、操作简单,交互性较好,真的是一款简单易用的BI工具。但是不支持深度的数据分析,图形计算和深度计算功能缺失,不能满足复杂的业务分析需求。

最后将视线聚焦国内,目前搜索排名和市场宣传比较好的也很多,永洪BI、帆软BI、BDP等。不过经过个人感觉整体宣传大于实际。

4、永洪BI

永洪BI功能方面应该是相对比较完善的,也是拖拽出图,有点类似Tableau的逻辑,不过功能与Tableau相比还是差的不是一点半点,但是操作难度居然比Tableau还难。预定义的分析功能比较丰富,图表功能和灵活性较大,但是操作的友好性不足。宣传拥有高级分析的数据挖掘功能,后来发现就集成了开源的几个算法,功能非常简单。而操作过程中大量的弹出框、难以理解含义的配置项,真的让人很晕。一个简单的堆积柱图,就研究了好久,看帮助、看视频才搞定。哎,只感叹功能藏得太深,不想给人用啊。

5、帆软BI

再说号称FBI的帆软BI,帆软报表很多国人都很熟悉,功能确实很不错,但是BI工具就真的一般般了。只能简单出图,配合报表工具使用,能让页面更好看,但是比起其他的可视化分析、BI工具,功能还是比较简单,分析的能力不足,功能还是比较简单。帆软名气确实很大,号称行业第一,但是主要在报表层面,而数据可视化分析方面就比较欠缺了。

6、Tempo

另一款工具,全名叫“Tempo大数据分析平台”,宣传比较少,2017年Gartner报告发布后无意中看到的。是一款BS的工具,申请试用也是费尽了波折啊,永洪是不想让人用,他直接不想卖的节奏。

第一次试用也是一脸懵逼,不知道该点那!不过抱着破罐子破摔的心态稍微点了几下之后,操作居然越来越流畅。也是拖拽式操作,数据可视化效果比较丰富,支持很多便捷计算,能满足常用的业务分析。最最惊喜的是它还支持可视化报告导出PPT,彻底解决了分析结果输出的问题。深入了解后,才发现他们的核心居然是“数据挖掘”,算法十分丰富,也是拖拽式操作,我一个文科的分析小白,居然跟着指导和说明做出了一个数据预测的挖掘流,简直不要太惊喜。掌握了Tempo的基本操作逻辑后,居然发现他的易用性真的很不错,功能完整性和丰富性也很好。

3. 大数据分析一般用什么工具分析

大数据分析是一个含义广泛的术语,是指数据集,如此庞大而复杂的,他们需要专门设计的硬件和软件工具进行处理。该数据集通常是万亿或EB的大小。这些数据集收集自各种各样的来源:和梁传感器,气候信息,公开的信息,如杂志,报纸,文章。大数据分析产生的其他例子包括购买交易记录,网络日志,病历,军事监控,视频和图像档案,及大型电子商务。

大数据分析,他们对企业的影响有一个兴趣高涨。大数据分析是研究大量的数据的过程中寻找模式,相关性和其他有用的信息,可以帮助企业更好地适应变化,并做出更明智的决策。

一、Hadoop

Hadoop是一个开源框架,它允许在整个集群使用简单编程模型计算机的分布式环境存储并处理大数据。它的目的是从单一的服务器到上千台机器的扩展,每一个台机都可以提供本地计算和存储。

Hadoop 是一个能够对大量数据进行分布式处理的软件框架。但是 Hadoop 是以一种可靠、高效、可伸缩的方式进行处理的。Hadoop
是可靠的,即使计算元素和存储会失败,它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop是高效的,它采用并行的方式工作,通过并行处理加快处理速度。Hadoop
还是可伸缩的,能够处理 PB 级数据。此外,Hadoop 依赖于社区服务器,因此它的成本比较低,任何人都可以使用。


Pentaho BI 平台,Pentaho Open BI
套件的核心架构和基础,是以流程为中心的,因为其中枢控制器是一个工作流引擎。工作流引擎使用流程定义来定义在BI
平台上执行的商业智能流程。流程可以很容易的被定制,也可以添加新的流程。BI
平台包含组件和报表,用以分析这些流程的性能。目前,Pentaho的主要组成元素包括报表生成、分析、数据挖掘和工作流管理等等。这些组件通过
J2EE、WebService、SOAP、HTTP、Java、JavaScript、Portals等技术集成到Pentaho平台中来。
Pentaho的发行,主要以Pentaho SDK的形式进行。

Pentaho
SDK共包含五个部分:Pentaho平台、Pentaho示例数据库、可独立运行的Pentaho平台、Pentaho解决方案示例和一个预先配制好的
Pentaho网络服务器。其中Pentaho平台是Pentaho平台最主要的部分,囊括了Pentaho平台源代码的主体;Pentaho数据库为
Pentaho平台的正常运行提供的数据服务,包括配置信息、Solution相关的信息等等,对于Pentaho平台来说它不是必须的,通过配置是可以用其它数据库服务取代的;可独立运行的Pentaho平台是Pentaho平台的独立运行模式的示例,它演示了如何使Pentaho平台在没有应用服务器支持的情况下独立运行;

Pentaho解决方案示例是一个Eclipse工程,用来演示如何为Pentaho平台开发相关的商业智能解决方案。

Pentaho BI 平台构建于服务器,引擎和组件的基础之上。这些提供了系统的J2EE
服务器,安全,portal,工作流,规则引擎,图表,协作,内容管理,数据集成,分析和建模功能。这些组件的大部分是基于标准的,可使用其他产品替换之。

七、Druid

Druid是实时数据分析存储系统,Java语言中最好的数据库连接池。Druid能够提供强大的监控和扩展功能。


八、Ambari

大数据平台搭建、监控利器;类似的还有CDH

1、提供Hadoop集群

Ambari为在任意数量的主机上安装Hadoop服务提供了一个逐步向导。

Ambari处理集群Hadoop服务的配置。

2、管理Hadoop集群

Ambari为整个集群提供启动、停止和重新配置Hadoop服务的中央管理。

3、监视Hadoop集群

Ambari为监视Hadoop集群的健康状况和状态提供了一个仪表板。


九、Spark

大规模数据处理框架(可以应付企业中常见的三种数据处理场景:复杂的批量数据处理(batch data
processing);基于历史数据的交互式查询;基于实时数据流的数据处理,Ceph:linux分布式文件系统。


十、Tableau Public

1、什么是Tableau Public - 大数据分析工具

这是一个简单直观的工具。因为它通过数据可视化提供了有趣的见解。Tableau
Public的百万行限制。因为它比数据分析市场中的大多数其他玩家更容易使用票价。使用Tableau的视觉效果,您可以调查一个假设。此外,浏览数据,并交叉核对您的见解。

2、Tableau Public的使用

您可以免费将交互式数据可视化发布到Web;无需编程技能;发布到Tableau
Public的可视化可以嵌入到博客中。此外,还可以通过电子邮件或社交媒体分享网页。共享的内容可以进行有效硫的下载。这使其成为最佳的大数据分析工具。

3、Tableau Public的限制

所有数据都是公开的,并且限制访问的范围很小;数据大小限制;无法连接到[R ;读取的唯一方法是通过OData源,是Excel或txt。

十一、OpenRefine

1、什么是OpenRefine - 数据分析工具

以前称为GoogleRefine的数据清理软件。因为它可以帮助您清理数据以进行分析。它对一行数据进行操作。此外,将列放在列下,与关系数据库表非常相似。

2、OpenRefine的使用

清理凌乱的数据;数据转换;从网站解析数据;通过从Web服务获取数据将数据添加到数据集。例如,OpenRefine可用于将地址地理编码到地理坐标。

3、OpenRefine的局限性

Open Refine不适用于大型数据集;精炼对大数据不起作用

十二、KNIME

1、什么是KNIME - 数据分析工具

KNIME通过可视化编程帮助您操作,分析和建模数据。它用于集成各种组件,用于数据挖掘和机器学习。

2、KNIME的用途

不要写代码块。相反,您必须在活动之间删除和拖动连接点;该数据分析工具支持编程语言;事实上,分析工具,例如可扩展运行化学数据,文本挖掘,蟒蛇,和[R

3、KNIME的限制

数据可视化不佳

十三、Google Fusion Tables

1、什么是Google Fusion Tables

对于数据工具,我们有更酷,更大版本的Google Spreadsheets。一个令人难以置信的数据分析,映射和大型数据集可视化工具。此外,Google
Fusion Tables可以添加到业务分析工具列表中。这也是最好的大数据分析工具之一。

2、使用Google Fusion Tables

在线可视化更大的表格数据;跨越数十万行进行过滤和总结;将表与Web上的其他数据组合在一起;您可以合并两个或三个表以生成包含数据集的单个可视化;

3、Google Fusion Tables的限制

表中只有前100,000行数据包含在查询结果中或已映射;在一次API调用中发送的数据总大小不能超过1MB。

十四、NodeXL

1、什么是NodeXL

它是关系和网络的可视化和分析软件。NodeXL提供精确的计算。它是一个免费的(不是专业的)和开源网络分析和可视化软件。NodeXL是用于数据分析的最佳统计工具之一。其中包括高级网络指标。此外,访问社交媒体网络数据导入程序和自动化。

2、NodeXL的用途

这是Excel中的一种数据分析工具,可帮助实现以下方面:

数据导入;图形可视化;图形分析;数据表示;该软件集成到Microsoft Excel
2007,2010,2013和2016中。它作为工作簿打开,包含各种包含图形结构元素的工作表。这就像节点和边缘;该软件可以导入各种图形格式。这种邻接矩阵,Pajek
.net,UCINet .dl,GraphML和边缘列表。

3、NodeXL的局限性

您需要为特定问题使用多个种子术语;在稍微不同的时间运行数据提取。

十五、Wolfram Alpha

1、什么是Wolfram Alpha

它是Stephen Wolfram创建的计算知识引擎或应答引擎。

2、Wolfram Alpha的使用

是Apple的Siri的附加组件;提供技术搜索的详细响应并解决微积分问题;帮助业务用户获取信息图表和图形。并有助于创建主题概述,商品信息和高级定价历史记录。

3、Wolfram Alpha的局限性

Wolfram Alpha只能处理公开数字和事实,而不能处理观点;它限制了每个查询的计算时间;这些数据分析统计工具有何疑问?

十六、Google搜索运营商

1、什么是Google搜索运营商

它是一种强大的资源,可帮助您过滤Google结果。这立即得到最相关和有用的信息。

2、Google搜索运算符的使用

更快速地过滤Google搜索结果;Google强大的数据分析工具可以帮助发现新信息。

十七、Excel解算器

1、什么是Excel解算器

Solver加载项是Microsoft Office Excel加载项程序。此外,它在您安装Microsoft
Excel或Office时可用。它是excel中的线性编程和优化工具。这允许您设置约束。它是一种先进的优化工具,有助于快速解决问题。

2、求解器的使用

Solver找到的最终值是相互关系和决策的解决方案;它采用了多种方法,来自非线性优化。还有线性规划到进化算法和遗传算法,以找到解决方案。

3、求解器的局限性

不良扩展是Excel Solver缺乏的领域之一;它会影响解决方案的时间和质量;求解器会影响模型的内在可解性;

十八、Dataiku DSS

1、什么是Dataiku DSS

这是一个协作数据科学软件平台。此外,它还有助于团队构建,原型和探索。虽然,它可以更有效地提供自己的数据产品。

2、Dataiku DSS的使用

Dataiku DSS - 数据分析工具提供交互式可视化界面。因此,他们可以构建,单击,指向或使用sql等语言。

3、Dataiku DSS的局限性

有限的可视化功能;UI障碍:重新加载代码/数据集;无法轻松地将整个代码编译到单个文档/笔记本中;仍然需要与SPARK集成

以上的工具只是大数据分析所用的部分工具,小编就不一一列举了,下面把部分工具的用途进行分类:

1、前端展现

用于展现分析的前端开源工具有JasperSoft,Pentaho, Spagobi, Openi, Birt等等。

用于展现分析商用分析工具有Style Intelligence、RapidMiner Radoop、Cognos, BO, Microsoft
Power BI, Oracle,Microstrategy,QlikView、 Tableau 。

国内的有BDP,国云数据(大数据分析魔镜),思迈特,FineBI等等。

2、数据仓库

有Teradata AsterData, EMC GreenPlum, HP Vertica 等等。

3、数据集市

有QlikView、 Tableau 、Style Intelligence等等。

4. 编译ambari需要maven哪个版本

后缀为“tar.gz”是Linux系统上装的,后缀为“zip”的是windows系统上装的; binary表示编译后的二进制文件,一般比较小,适森枣合直接在项目中使用, source表示可以查看源代码的,升春没比binary大一些,如果你想吵纳看一下maven的源码可以下载这一类的;

5. ambari+web+二次开发是怎么回事

  • 开发环境搭建

在windows下安装nodejspython的编译运行环境比较复杂,主要是nodejs有些库文件 是需要C++ 、ruby、python等一些语言进行编译,所以在Linux上搭建这些环境简单,使用samba协议共享Linux中的文件,在linux上运行测试,在windows下进行代码修改。

  • 开发流程

  1. 在ambari-web工程下,运行命令,下载好ambari相应的源码,进入相应的目录中。[root@bigData-02 ambari-web]# brunch watch –server ;

  2. 在window上,通过远程连接访问到samba共享出来的目录,修改相应的代码,ambari-web项目会自动编译,在浏览器刷新,会看到修改后的效果。

  3. 打包。

6. 小白想转行做大数据,怎么入行

大数据技术专业属于交叉学科:以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。

此外还需学习数据采集、分析、处理软件,学习数学建模软件及计算机编程语言等,知识结构是二专多能复合的跨界人才(有专业知识、有数据思维)。

大数据时代则对从业人员素质的要求越来越高,因为数据处理变得越来越复杂,数据人才的竞争也越来越激烈,很多大公司都在寻找尖端人才。而且,大到国防、金融,小到跟生活息息相关的物流、购物、医疗、交通等,都日益需要大数据的支撑。大数据正在成为一门“显学”。

对于大数据开发的学习,重在掌握基本知识以及实践应用,合理安排基础知识的学习,可以起到事半功倍的效果,以下是比较经典的大数据开发学习路线:

第一阶段:JavaSE+MySql+Linux

Java语言入门 → OOP编程 → Java常用Api、集合 → IO/NIO → Java实用技术 → Mysql数据库 → 阶段项目实战 → Linux基础 → shell编程

第二阶段:Hadoop与生态系统

Hadoop → MapRece → Avro → Hive → Hbase → Zookeeper → Flume → Kafka → Sqoop → Pig

第三阶段:Storm与Spark及其生态圈

Storm → Scala → Spark → Spark SQL → Spark Streaming → Spark机器学习

第四阶段:其他

Mahout机器学习 → R语言 → Python

第五阶段:项目实战、技术综合运用
希望对您有所帮助!~

热点内容
scratch少儿编程课程 发布:2025-04-16 17:11:44 浏览:639
荣耀x10从哪里设置密码 发布:2025-04-16 17:11:43 浏览:368
java从入门到精通视频 发布:2025-04-16 17:11:43 浏览:84
php微信接口教程 发布:2025-04-16 17:07:30 浏览:310
android实现阴影 发布:2025-04-16 16:50:08 浏览:793
粉笔直播课缓存 发布:2025-04-16 16:31:21 浏览:344
机顶盒都有什么配置 发布:2025-04-16 16:24:37 浏览:212
编写手游反编译都需要学习什么 发布:2025-04-16 16:19:36 浏览:812
proteus编译文件位置 发布:2025-04-16 16:18:44 浏览:366
土压缩的本质 发布:2025-04-16 16:13:21 浏览:592