当前位置:首页 » 操作系统 » 自然并归算法

自然并归算法

发布时间: 2023-05-29 02:43:05

㈠ 归并排序算法是什么

归并排序(Merge Sort)是建立在归并操作上的一种有效,稳定的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。

归并操作的工作原理如下:

第一步:申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列。

第二步:设定两个指针,最初位置分别为两个已经排序序列的起始位置。

第三步:比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置。

重复步骤3直到某一指针超出序列尾。

将另一序列剩下的所有元素直接复制到合并序列尾。

㈡ 归并排序时间复杂度是什么

归并排序(MERGE-SORT)时间复杂度是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

归并算法采用分治法,将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。

其实现方式:先把待排序区间以中点二分;接着把左边子区间排序;再把右边子区间排序;最后把左区间和右区间用一次归李厅并操作合并成有序的区间。

合并排序又称为归并排序算法,是比较排序中时间复杂度最低巧磨的算法(已经理论证明)。也孝扰斗是充分利用了分治思想,分而治之,将复杂重复的工作不断进行分解至最小单元,而后逐层向上汇总,就像复杂的行政结构。

㈢ 归并排序算法是什么呢

归并排序算法是建立在归并操作上的一种有效,稳定的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。归并操作,也叫归并算法,指的是将两个顺序序列合并成一个顺序序列的方法。

将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。

算法比较:

归并排序是稳定的排序.即相等的元素的顺序不会改变.如输入记录1(1) 3(2) 2(3) 2(4) 5(5) (括号中是记录的关键字)时输出的1(1) 2(3) 2(4) 3(2) 5(5)中的2和2是按输入的顺序。

这对要排序数据包含多个信息而要按其中的某一个信息排序,要求其它信息尽量按输入的顺序排列时很重要。归并排序的比较次数小于快速排序的比较次数,移动次数一般多于快速排序的移动次数。

速度仅次于快速排序,为稳定排序算法,一般用于对总体无序,但是各子项相对有序的数列,应用见2011年普及复赛第3题“瑞士轮”的标程。

以上内容参考:网络-归并排序

㈣ 什么叫归并算法

合并排序(MERGE SORT)是又一类不同的排序方法,合并的含义就是将两个或两个以上的有序数据序列合并成一个新的有序数据序列,因此它又叫归并算法。它的基本思想就是假设数组A有N个元素,那么可以看成数组A是又N个有序的子序列组成,每个子序列的长度为1,然后再两两合并,得到了一个 N/2 个长度为2或1的有序子序列,再两两合并,如此重复,值得得到一个长度为N的有序数据序列为止,这种排序方法称为2—路合并排序。
例如数组A有7个数据,分别是: 49 38 65 97 76 13 27,那么采用归并排序算法的操作过程如图7所示:
初始值 [49] [38] [65] [97] [76] [13] [27]
看成由长度为1的7个子序列组成
第一次合并之后 [38 49] [65 97] [13 76] [27]
看成由长度为1或2的4个子序列组成
第二次合并之后 [38 49 65 97] [13 27 76]
看成由长度为4或3的2个子序列组成
第三次合并之后 [13 27 38 49 65 76 97]
合并算法的核心操作就是将一维数组中前后相邻的两个两个有序序列合并成一个有序序列。合并算法也可以采用递归算法来实现,形式上较为简单,但实用性很差。合并算法的合并次数是一个非常重要的量,根据计算当数组中有3到4个元素时,合并次数是2次,当有5到8个元素时,合并次数是3次,当有9到16个元素时,合并次数是4次,按照这一规律,当有N个子序列时可以推断出合并的次数是X(2 >=N,符合此条件的最小那个X)。
其时间复杂度为:O(nlogn).所需辅助存储空间为:O(n)
归并算法如下:
long merge(long *A,long p,long q,long r)
{
long n1,n2,i,j,k;
long *L,*R;
n1=q-p+1;
n2=r-q;
L=(long *)malloc((n1+2)*sizeof(long));
R=(long *)malloc((n2+2)*sizeof(long));
for(i=1;i<=n1;i++)
L=A[p+i-1];
for(j=1;j<=n2;j++)
R[j]=A[q+j];
L[n1+1]=R[n2+1]=RAND_MAX;
i=j=1;
for(k=p;k<=r;k++)
{
if(L<=R[j])
{
A[k]=L;
i++;
}
else
{
A[k]=R[j];
j++;
}
}
free(L);
free(R);
return 0;
}
long mergesort(long *A,long p,long r)
{
long q;
if(p<r)
{
q=(p+r)/2;
mergesort(A,p,q);
mergesort(A,q+1,r);
merge(A,p,q,r);
}
return 0;
}

㈤ 谁能给个以C++语言为基础的归并排序法啊,最好有例子哈````

可以运用分而治之方法来解决排序问题,该问题是将n 个元素排成非递减顺序。分而治之方法通常用以下的步骤来进行排序算法:若n 为1,算法终止;否则,将这一元素集合分割成两个或更多个子集合,对每一个子集合分别排序,然后将排好序的子集合归并为一个集合。

假设仅将n 个元素的集合分成两个子集合。现在需要确定如何进行子集合的划分。一种可能性就是把前面n- 1个元素放到第一个子集中(称为A),最后一个元素放到第二个子集里(称为B)。按照这种方式对A递归地进行排序。由于B仅含一个元素,所以它已经排序完毕,在A排完序后,只需要用程序2 - 1 0中的函数i n s e r t将A和B合并起来。把这种排序算法与I n s e r t i o n S o r t(见程序2 - 1 5)进行比较,可以发现这种排序算法实际上就是插入排序的递归算法。该算法的复杂性为O (n 2 )。把n 个元素划分成两个子集合的另一种方法是将含有最大值的元素放入B,剩下的放入A中。然后A被递归排序。为了合并排序后的A和B,只需要将B添加到A中即可。假如用函数M a x(见程序1 - 3 1)来找出最大元素,这种排序算法实际上就是S e l e c t i o n S o r t(见程序2 - 7)的递归算法。

假如用冒泡过程(见程序2 - 8)来寻找最大元素并把它移到最右边的位置,这种排序算法就是B u b b l e S o r t(见程序2 - 9)的递归算法。这两种递归排序算法的复杂性均为(n2 )。若一旦发现A已经被排好序就终止对A进行递归分割,则算法的复杂性为O(n2 )(见例2 - 1 6和2 - 1 7)。

上述分割方案将n 个元素分成两个极不平衡的集合A和B。A有n- 1个元素,而B仅含一个元素。下面来看一看采用平衡分割法会发生什么情况: A集合中含有n/k 个元素,B中包含其余的元素。递归地使用分而治之方法对A和B进行排序。然后采用一个被称之为归并( m e rg e)槐塌的过程,将已排好序的A和B合并成一个集合。

例2-5 考虑8个元素,值分别为[ 1 0,4,6,3,8,2,5,7 ]。如果选定k = 2,则[ 1 0 , 4 , 6 , 3 ]和[ 8 , 2 , 5 , 7 ]将被分别独立地排序。结果分铅厅圆别为[ 3 , 4 , 6 , 1 0 ]和[ 2 , 5 , 7 , 8 ]。从两个序列的头部开始归并这两个已排序的序列。元素2比3更小,被移到结果序列;3与5进行比较,3被移入结果序列;4与5比较,4被放入结果序列;5和6比较,.。如果选择k= 4,则序列[ 1 0 , 4 ]和[ 6 , 3 , 8 , 2 , 5 , 7 ]将被排序。排序结果分别为[ 4 , 1 0 ]和[ 2 , 3 , 5 , 6 , 7 , 8 ]。当这两个排好序的序列被归并后,即可得所需要的排序序列。

图2 - 6给出了分而治之排序算法的伪代码。算法中子集合的数目为2,A中含有n/k个元素。

template

void sort( T E, int n)

{ / /对E中的n 个元素进行排序, k为全局变量

if (n >= k) {

i = n/k;

j = n-i;

令A 包含E中的前i 个元素

令B 包含E中余下的j 个元素

s o r t ( A , i ) ;

s o r t ( B , j ) ;

m e rge(A,B,E,i,j,); //把A 和B 合并到E

}

else 使用插入排序算法对E 进行排序

}

图14-6 分而治之排序算法的伪代码

从对归并过程的简略描述中,可以明显地看出归并n个元素所伏颂需要的时间为O (n)。设t (n)为分而治之排序算法(如图1 4 - 6所示)在最坏情况下所需花费的时间,则有以下递推公式:

其中c 和d 为常数。当n / k≈n-n / k 时,t (n) 的值最小。因此当k= 2时,也就是说,当两个子集合所包含的元素个数近似相等时, t (n) 最小,即当所划分的子集合大小接近时,分而治之算法通常具有最佳性能。

可以用迭代方法来计算这一递推方式,结果为t(n)= (nl o gn)。虽然这个结果是在n为2的幂时得到的,但对于所有的n,这一结果也是有效的,因为t(n) 是n 的非递减函数。t(n) =(nl o gn) 给出了归并排序的最好和最坏情况下的复杂性。由于最好和最坏情况下的复杂性是一样的,因此归并排序的平均复杂性为t (n)= (nl o gn)。

图2 - 6中k= 2的排序方法被称为归并排序( m e rge sort ),或更精确地说是二路归并排序(two-way merge sort)。下面根据图1 4 - 6中k= 2的情况(归并排序)来编写对n 个元素进行排序的C + +函数。一种最简单的方法就是将元素存储在链表中(即作为类c h a i n的成员(程序3 -8))。在这种情况下,通过移到第n/ 2个节点并打断此链,可将E分成两个大致相等的链表。

归并过程应能将两个已排序的链表归并在一起。如果希望把所得到C + +程序与堆排序和插入排序进行性能比较,那么就不能使用链表来实现归并排序,因为后两种排序方法中都没有使用链表。为了能与前面讨论过的排序函数作比较,归并排序函数必须用一个数组a来存储元素集合E,并在a 中返回排序后的元素序列。为此按照下述过程来对图1 4 - 6的伪代码进行细化:当集合E被化分成两个子集合时,可以不必把两个子集合的元素分别复制到A和B中,只需简单地在集合E中保持两个子集合的左右边界即可。接下来对a 中的初始序列进行排序,并将所得到的排序序列归并到一个新数组b中,最后将它们复制到a 中。图1 4 - 6的改进版见图1 4 - 7。

template

M e rgeSort( T a[], int left, int right)

{ / /对a [ l e f t : r i g h t ]中的元素进行排序

if (left < right) {//至少两个元素

int i = (left + right)/2; //中心位置

M e rgeSort(a, left, i);

M e rgeSort(a, i+1, right);

M e rge(a, b, left, i, right); //从a 合并到b

Copy(b, a, left, right); //结果放回a

}

}

图14-7 分而治之排序算法的改进

可以从很多方面来改进图1 4 - 7的性能,例如,可以容易地消除递归。如果仔细地检查图1 4 - 7中的程序,就会发现其中的递归只是简单地重复分割元素序列,直到序列的长度变成1为止。当序列的长度变为1时即可进行归并操作,这个过程可以用n 为2的幂来很好地描述。长度为1的序列被归并为长度为2的有序序列;长度为2的序列接着被归并为长度为4的有序序列;这个过程不断地重复直到归并为长度为n 的序列。图1 4 - 8给出n= 8时的归并(和复制)过程,方括号表示一个已排序序列的首和尾。

初始序列[8] [4] [5] [6] [2] [1] [7] [3]

归并到b [4 8] [5 6] [1 2] [3 7]

复制到a [4 8] [5 6] [1 2] [3 7]

归并到b [4 5 6 8] [1 2 3 7]

复制到a [4 5 6 8] [1 2 3 7]

归并到b [1 2 3 4 5 6 7 8]

复制到a [1 2 3 4 5 6 7 8]

图14-8 归并排序的例子

另一种二路归并排序算法是这样的:首先将每两个相邻的大小为1的子序列归并,然后对上一次归并所得到的大小为2的子序列进行相邻归并,如此反复,直至最后归并到一个序列,归并过程完成。通过轮流地将元素从a 归并到b 并从b 归并到a,可以虚拟地消除复制过程。二路归并排序算法见程序1 4 - 3。

程序14-3 二路归并排序

template

void MergeSort(T a[], int n)

{// 使用归并排序算法对a[0:n-1] 进行排序

T *b = new T [n];

int s = 1; // 段的大小

while (s < n) {

MergePass(a, b, s, n); // 从a归并到b

s += s;

MergePass(b, a, s, n); // 从b 归并到a

s += s;

}

}

为了完成排序代码,首先需要完成函数M e rg e P a s s。函数M e rg e P a s s(见程序1 4 - 4)仅用来确定欲归并子序列的左端和右端,实际的归并工作由函数M e rg e (见程序1 4 - 5 )来完成。函数M e rg e要求针对类型T定义一个操作符< =。如果需要排序的数据类型是用户自定义类型,则必须重载操作符< =。这种设计方法允许我们按元素的任一个域进行排序。重载操作符< =的目的是用来比较需要排序的域。

程序14-4 MergePass函数

template

void MergePass(T x[], T y[], int s, int n)

{// 归并大小为s的相邻段

int i = 0;

while (i <= n - 2 * s) {

// 归并两个大小为s的相邻段

Merge(x, y, i, i+s-1, i+2*s-1);

i = i + 2 * s;

}

// 剩下不足2个元素

if (i + s < n) Merge(x, y, i, i+s-1, n-1);

else for (int j = i; j <= n-1; j++)

// 把最后一段复制到y

y[j] = x[j];

}

程序14-5 Merge函数

template

void Merge(T c[], T d[], int l, int m, int r)

{// 把c[l:m]] 和c[m:r] 归并到d [ l : r ] .

int i = l, // 第一段的游标

j = m+1, // 第二段的游标

k = l; // 结果的游标

/ /只要在段中存在i和j,则不断进行归并

while ((i <= m) && (j <= r))

if (c[i] <= c[j]) d[k++] = c[i++];

else d[k++] = c[j++];

// 考虑余下的部分

if (i > m) for (int q = j; q <= r; q++)

d[k++] = c[q];

else for (int q = i; q <= m; q++)

d[k++] = c[q];

}

自然归并排序(natural merge sort)是基本归并排序(见程序1 4 - 3)的一种变化。它首先对输入序列中已经存在的有序子序列进行归并。例如,元素序列[ 4,8,3,7,1,5,6,2 ]中包含有序的子序列[ 4,8 ],[ 3,7 ],[ 1,5,6 ]和[ 2 ],这些子序列是按从左至右的顺序对元素表进行扫描而产生的,若位置i 的元素比位置i+ 1的元素大,则从位置i 进行分割。对于上面这个元素序列,可找到四个子序列,子序列1和子序列2归并可得[ 3 , 4 , 7 , 8 ],子序列3和子序列4归并可得[ 1 , 2 , 5 , 6 ],最后,归并这两个子序列得到[ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ]。因此,对于上述元素序列,仅仅使用了两趟归并,而程序1 4 - 3从大小为1的子序列开始,需使用三趟归并。作为一个极端的例子,假设输入的元素序列已经排好序并有n个元素,自然归并排序法将准确地识别该序列不必进行归并排序,但程序1 4 - 3仍需要进行[ l o g2 n] 趟归并。因此自然归并排序将在(n) 的时间内完成排序。而程序1 4 - 3将花费(n l o gn) 的时间。

㈥ 归并排序

先考虑一个简单的问题:如何在线性的时间内将两个有序队列合并为一个有序队列(并输出)?

A队列:1 3 5 7 9
B队列:1 2 7 8 9

看上面的例子,AB两个序列都是已经有序的了。在给出数据已经有序的情况下,我们会发现很多神奇的事,比如,我们将要输出的第一个数一定来自于这两个序列各自最前面的那个数。两个数都是1,那么我们随便取出一个(比如A队列的那个1)并输出:

A队列:1 3 5 7 9
B队列:1 2 7 8 9
输出:1

注意,我们取出了一个数,在原数列中删除这个数。删除操作是通过移动队首指针实现的,否则复杂度就高了。
现在,A队列打头的数变成3了,B队列的队首仍然是1。此时,我们再比较3和1哪个大并输出小的那个数:

A队列:1 3 5 7 9
B队列:1 2 7 8 9
输出:1 1

接下来的几步如下:

A队列:1 3 5 7 9 A队列:1 3 5 7 9 A队列:1 3 5 7 9 A队列:1 3 5 7 9
B队列:1 2 7 8 9 ==> B队列:1 2 7 8 9 ==> B队列:1 2 7 8 9 ==> B队列:1 2 7 8 9 ……
输出:1 1 2 输出:1 1 2 3 输出:1 1 2 3 5 输出:1 1 2 3 5 7

我希望你明白了这是怎么做的。这个做法显然是正确的,复杂度显然是线性。

归并排序(Merge Sort)将会用到上面所说的合并操作。给出一个数列,归并排序利用合并操作在O(nlogn)的时间内将数列从小到大排序。归并排序用的是分治(Divide and Conquer)的思想。首先我们把给出的数列平分为左右两段,然后对两段数列分别进行排序,最后用刚才的合并算法把这两段(已经排过序的)数列合并为一个数列。有人会问“对左右两段数列分别排序时用的什么排序”么?答案是:用归并排序。也就是说,我们递归地把每一段数列又分成两段进行上述操作。你不需要关心实际上是怎么操作的,我们的程序代码将递归调用该过程直到数列不能再分(只有一个数)为止。
初看这个算法时有人会误以为时间复杂度相当高。我们下面给出的一个图将用非递归的眼光来看归并排序的实际操作过程,供大家参考。我们可以借助这个图证明,归并排序算法的时间复杂度为O(nlogn)。

[3] [1] [4] [1] [5] [9] [2] [7]
\ / \ / \ / \ /
[1 3] [1 4] [5 9] [2 7]
\ / \ /
[1 1 3 4] [2 5 7 9]
\ /
[1 1 2 3 4 5 7 9]

上图中的每一个“ \ / ”表示的是上文所述的线性时间合并操作。上图用了4行来图解归并排序。如果有n个数,表示成上图显然需要O(logn)行。每一行的合并操作复杂度总和都是O(n),那么logn行的总复杂度为O(nlogn)。这相当于用递归树的方法对归并排序的复杂度进行了分析。假设,归并排序的复杂度为T(n),T(n)由两个T(n/2)和一个关于n的线性时间组成,那么T(n)=2*T(n/2)+O(n)。不断展开这个式子我们可以同样可以得到T(n)=O(nlogn)的结论,你可以自己试试。如果你能在线性的时间里把分别计算出的两组不同数据的结果合并在一起,根据T(n)=2*T(n/2)+O(n)=O(nlogn),那么我们就可以构造O(nlogn)的分治算法。这个结论后面经常用。我们将在计算几何部分举一大堆类似的例子。
如果你第一次见到这么诡异的算法,你可能会对这个感兴趣。分治是递归的一种应用。这是我们第一次接触递归运算。下面说的快速排序也是用的递归的思想。递归程序的复杂度分析通常和上面一样,主定理(Master Theory)可以简化这个分析过程。主定理和本文内容离得太远,我们以后也不会用它,因此我们不介绍它,大家可以自己去查。有个名词在这里的话找学习资料将变得非常容易,我最怕的就是一个东西不知道叫什么名字,半天找不到资料。

归并排序有一个有趣的副产品。利用归并排序能够在O(nlogn)的时间里计算出给定序列里逆序对的个数。你可以用任何一种平衡二叉树来完成这个操作,但用归并排序统计逆序对更方便。我们讨论逆序对一般是说的一个排列中的逆序对,因此这里我们假设所有数不相同。假如我们想要数1, 6, 3, 2, 5, 4中有多少个逆序对,我们首先把这个数列分为左右两段。那么一个逆序对只可能有三种情况:两个数都在左边,两个数都在右边,一个在左一个在右。在左右两段分别处理完后,线性合并的过程中我们可以顺便算出所有第三种情况的逆序对有多少个。换句话说,我们能在线性的时间里统计出A队列的某个数比B队列的某个数大有多少种情况。

A队列:1 3 6 A队列:1 3 6 A队列:1 3 6 A队列:1 3 6 A队列:1 3 6
B队列:2 4 5 ==> B队列:2 4 5 ==> B队列:2 4 5 ==> B队列:2 4 5 ==> B队列:2 4 5 ……
输出: 输出:1 输出:1 2 输出:1 2 3 输出:1 2 3 4

每一次从B队列取出一个数时,我们就知道了在A队列中有多少个数比B队列的这个数大,它等于A队列现在还剩的数的个数。比如,当我们从B队列中取出2时,我们同时知道了A队列的3和6两个数比2大。在合并操作中我们不断更新A队列中还剩几个数,在每次从B队列中取出一个数时把当前A队列剩的数目加进最终答案里。这样我们算出了所有“大的数在前一半,小的数在后一半”的情况,其余情况下的逆序对在这之前已经被递归地算过了。

============================华丽的分割线============================

堆排序(Heap Sort)利用了堆(Heap)这种数据结构(什么是堆?)。堆的插入操作是平均常数的,而删除一个根节点需要花费O(log n)的时间。因此,完成堆排序需要线性时间建立堆(把所有元素依次插入一个堆),然后用总共O(nlogn)的时间不断取出最小的那个数。只要堆会搞,堆排序就会搞。堆在那篇日志里有详细的说明,因此这里不重复说了。

============================华丽的分割线============================

快速排序(Quick Sort)也应用了递归的思想。我们想要把给定序列分成两段,并对这两段分别进行排序。一种不错的想法是,选取一个数作为“关键字”,并把其它数分割为两部分,把所有小于关键字的数都放在关键字的左边,大于关键字的都放在右边,然后递归地对左边和右边进行排序。把该区间内的所有数依次与关键字比较,我们就可以在线性的时间里完成分割的操作。完成分割操作有很多有技巧性的实现方法,比如最常用的一种是定义两个指针,一个从前往后找找到比关键字大的,一个从后往前找到比关键字小的,然后两个指针对应的元素交换位置并继续移动指针重复刚才的过程。这只是大致的方法,具体的实现还有很多细节问题。快速排序是我们最常用的代码之一,网上的快速排序代码五花八门,各种语言,各种风格的都有。大家可以随便找一个来看看,我说过了我们讲算法但不讲如何实现。NOIp很简单,很多人NOIp前就背了一个快速排序代码就上战场了。当时我把快速排序背完了,抓紧时间还顺便背了一下历史,免得晚上听写又不及格。
不像归并排序,快速排序的时间复杂度很难计算。我们可以看到,归并排序的复杂度最坏情况下也是O(nlogn)的,而快速排序的最坏情况是O(n^2)的。如果每一次选的关键字都是当前区间里最大(或最小)的数,那么这样将使得每一次的规模只减小一个数,这和插入排序、选择排序等平方级排序没有区别。这种情况不是不可能发生。如果你每次选择关键字都是选择的该区间的第一个数,而给你的数据恰好又是已经有序的,那你的快速排序就完蛋了。显然,最好情况是每一次选的数正好就是中位数,这将把该区间平分为两段,复杂度和前面讨论的归并排序一模一样。根据这一点,快速排序有一些常用的优化。比如,我们经常从数列中随机取一个数当作是关键字(而不是每次总是取固定位置上的数),从而尽可能避免某些特殊的数据所导致的低效。更好的做法是随机取三个数并选择这三个数的中位数作为关键字。而对三个数的随机取值反而将花费更多的时间,因此我们的这三个数可以分别取数列的头一个数、末一个数和正中间那个数。另外,当递归到了一定深度发现当前区间里的数只有几个或十几个时,继续递归下去反而费时,不如返回插入排序后的结果。这种方法同时避免了当数字太少时递归操作出错的可能。

下面我们证明,快速排序算法的平均复杂度为O(nlogn)。不同的书上有不同的解释方法,这里我选用算法导论上的讲法。它更有技巧性一些,更有趣一些,需要转几个弯才能想明白。
看一看快速排序的代码。正如我们提到过的那种分割方法,程序在经过若干次与关键字的比较后才进行一次交换,因此比较的次数比交换次数更多。我们通过证明一次快速排序中元素之间的比较次数平均为O(nlogn)来说明快速排序算法的平均复杂度。证明的关键在于,我们需要算出某两个元素在整个算法过程中进行过比较的概率。
我们举一个例子。假如给出了1到10这10个数,第一次选择关键字7将它们分成了{1,2,3,4,5,6}和{8,9,10}两部分,递归左边时我们选择了3作为关键字,使得左部分又被分割为{1,2}和{4,5,6}。我们看到,数字7与其它所有数都比较过一次,这样才能实现分割操作。同样地,1到6这6个数都需要与3进行一次比较(除了它本身之外)。然而,3和9决不可能相互比较过,2和6也不可能进行过比较,因为第一次出现在3和9,2和6之间的关键字把它们分割开了。也就是说,两个数A(i)和A(j)比较过,当且仅当第一个满足A(i)<=x<=A(j)的关键字x恰好就是A(i)或A(j) (假设A(i)比A(j)小)。我们称排序后第i小的数为Z(i),假设i<j,那么第一次出现在Z(i)和Z(j)之间的关键字恰好就是Z(i)或Z(j)的概率为2/(j-i+1),这是因为当Z(i)和Z(j)之间还不曾有过关键字时,Z(i)和Z(j)处于同一个待分割的区间,不管这个区间有多大,不管递归到哪里了,关键字的选择总是随机的。我们得到,Z(i)和Z(j)在一次快速排序中曾经比较过的概率为2/(j-i+1)。
现在有四个数,2,3,5,7。排序时,相邻的两个数肯定都被比较过,2和5、3和7都有2/3的概率被比较过,2和7之间被比较过有2/4的可能。也就是说,如果对这四个数做12次快速排序,那么2和3、3和5、5和7之间一共比较了12*3=36次,2和5、3和7之间总共比较了8*2=16次,2和7之间平均比较了6次。那么,12次排序中总的比较次数期望值为36+16+6=58。我们可以计算出单次的快速排序平均比较了多少次:58/12=29/6。其实,它就等于6项概率之和,1+1+1+2/3+2/3+2/4=29/6。这其实是与期望值相关的一个公式。
同样地,如果有n个数,那么快速排序平均需要的比较次数可以写成下面的式子。令k=j-i,我们能够最终得到比较次数的期望值为O(nlogn)。

这里用到了一个知识:1+1/2+1/3+...+1/n与log n增长速度相同,即∑(1/n)=Θ(log n)。它的证明放在本文的最后。

在三种O(nlogn)的排序算法中,快速排序的理论复杂度最不理想,除了它以外今天说的另外两种算法都是以最坏情况O(nlogn)的复杂度进行排序。但实践上看快速排序效率最高(不然为啥叫快速排序呢),原因在于快速排序的代码比其它同复杂度的算法更简洁,常数时间更小。

快速排序也有一个有趣的副产品:快速选择给出的一些数中第k小的数。一种简单的方法是使用上述任一种O(nlogn)的算法对这些数进行排序并返回排序后数组的第k个元素。快速选择(Quick Select)算法可以在平均O(n)的时间完成这一操作。它的最坏情况同快速排序一样,也是O(n^2)。在每一次分割后,我们都可以知道比关键字小的数有多少个,从而确定了关键字在所有数中是第几小的。我们假设关键字是第m小。如果k=m,那么我们就找到了答案——第k小元素即该关键字。否则,我们递归地计算左边或者右边:当k<m时,我们递归地寻找左边的元素中第k小的;当k>m时,我们递归地寻找右边的元素中第k-m小的数。由于我们不考虑所有的数的顺序,只需要递归其中的一边,因此复杂度大大降低。复杂度平均线性,我们不再具体证了。
还有一种算法可以在最坏O(n)的时间里找出第k小元素。那是我见过的所有算法中最没有实用价值的算法。那个O(n)只有理论价值。

============================华丽的分割线============================

我们前面证明过,仅仅依靠交换相邻元素的操作,复杂度只能达到O(n^2)。于是,人们尝试交换距离更远的元素。当人们发现O(nlogn)的排序算法似乎已经是极限的时候,又是什么制约了复杂度的下界呢?我们将要讨论的是更底层的东西。我们仍然假设所有的数都不相等。
我们总是不断在数与数之间进行比较。你可以试试,只用4次比较绝对不可能给4个数排出顺序。每多进行一次比较我们就又多知道了一个大小关系,从4次比较中一共可以获知4个大小关系。4个大小关系共有2^4=16种组合方式,而4个数的顺序一共有4!=24种。也就是说,4次比较可能出现的结果数目不足以区分24种可能的顺序。更一般地,给你n个数叫你排序,可能的答案共有n!个,k次比较只能区分2^k种可能,于是只有2^k>=n!时才有可能排出顺序。等号两边取对数,于是,给n个数排序至少需要log2(n!)次。注意,我们并没有说明一定能通过log2(n!)次比较排出顺序。虽然2^5=32超过了4!,但这不足以说明5次比较一定足够。如何用5次比较确定4个数的大小关系还需要进一步研究。第一次例外发生在n=12的时候,虽然2^29>12!,但现已证明给12个数排序最少需要30次比较。我们可以证明log(n!)的增长速度与nlogn相同,即log(n!)=Θ(nlogn)。这是排序所需要的最少的比较次数,它给出了排序复杂度的一个下界。log(n!)=Θ(nlogn)的证明也附在本文最后。
这篇日志的第三题中证明log2(N)是最优时用到了几乎相同的方法。那种“用天平称出重量不同的那个球至少要称几次”一类题目也可以用这种方法来解决。事实上,这里有一整套的理论,它叫做信息论。信息论是由香农(Shannon)提出的。他用对数来表示信息量,用熵来表示可能的情况的随机性,通过运算可以知道你目前得到的信息能够怎样影响最终结果的确定。如果我们的信息量是以2为底的,那信息论就变成信息学了。从根本上说,计算机的一切信息就是以2为底的信息量(bits=binary digits),因此我们常说香农是数字通信之父。信息论和热力学关系密切,比如熵的概念是直接从热力学的熵定义引申过来的。和这个有关的东西已经严重偏题了,这里不说了,有兴趣可以去看《信息论与编码理论》。我对这个也很有兴趣,半懂不懂的,很想了解更多的东西,有兴趣的同志不妨加入讨论。物理学真的很神奇,利用物理学可以解决很多纯数学问题,我有时间的话可以举一些例子。我他妈的为啥要选文科呢。
后面将介绍的三种排序是线性时间复杂度,因为,它们排序时根本不是通过互相比较来确定大小关系的。

附1:∑(1/n)=Θ(log n)的证明
首先我们证明,∑(1/n)=O(log n)。在式子1+1/2+1/3+1/4+1/5+...中,我们把1/3变成1/2,使得两个1/2加起来凑成一个1;再把1/5,1/6和1/7全部变成1/4,这样四个1/4加起来又是一个1。我们把所有1/2^k的后面2^k-1项全部扩大为1/2^k,使得这2^k个分式加起来是一个1。现在,1+1/2+...+1/n里面产生了几个1呢?我们只需要看小于n的数有多少个2的幂即可。显然,经过数的扩大后原式各项总和为log n。O(logn)是∑(1/n)的复杂度上界。
然后我们证明,∑(1/n)=Ω(log n)。在式子1+1/2+1/3+1/4+1/5+...中,我们把1/3变成1/4,使得两个1/4加起来凑成一个1/2;再把1/5,1/6和1/7全部变成1/8,这样四个1/8加起来又是一个1/2。我们把所有1/2^k的前面2^k-1项全部缩小为1/2^k,使得这2^k个分式加起来是一个1/2。现在,1+1/2+...+1/n里面产生了几个1/2呢?我们只需要看小于n的数有多少个2的幂即可。显然,经过数的缩小后原式各项总和为1/2*logn。Ω(logn)是∑(1/n)的复杂度下界。

附2:log(n!)=Θ(nlogn)的证明
首先我们证明,log(n!)=O(nlogn)。显然n!<n^n,两边取对数我们得到log(n!)<log(n^n),而log(n^n)就等于nlogn。因此,O(nlogn)是log(n!)的复杂度上界。
然后我们证明,log(n!)=Ω(nlogn)。n!=n(n-1)(n-2)(n-3)....1,把前面一半的因子全部缩小到n/2,后面一半因子全部舍去,显然有n!>(n/2)^(n/2)。两边取对数,log(n!)>(n/2)log(n/2),后者即Ω(nlogn)。因此,Ω(nlogn)是log(n!)的复杂度下界。

今天写到这里了,大家帮忙校对哦
Matrix67原创
转贴请注明出处

㈦ 求助:分组并从大到小排序,且每组最大值赋值从1 开

/*
归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,
该算法是采用分治法(DivideandConquer)的一个非常典型的应用。
将已有序的子序列合并,得到完全有序的序列;
即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并
成一个有序表,称为二路归并。
归并过程为:比较a[i]和b[j]的大小,若a[i]>=[j](从大到小,如果要
从小到大,则<=),则将第一个有序表中的元素a[i]复制到r[k]中,并令
i和k分别加上1;否则将第二个有序表中的元素b[j]复制到r[k]中,并令
j和k分别加上1,如此循环下去,直到其中一个有序表取完迹链兆,然后再将姿租另
一个有序表中剩余的元素复制到r中从下标k到下标t的单元。归并排序的
算法我们通常用递归实现,先把待排序区间[s,t]以中点二分,接着把左
边子区间排序,再把右边子区间排序,最后把左区间和右区间用一次归并
操作合并成有序的区间[s,t]。
*/
#include<stdio.h>
intb[10];
//将有二个有序数列a[first...mid]和a[mid...last]合并。归并排序.
voidmergearray(inta[],intfirst,intmid,intlast,inttemp[])
{
inti=first,j=mid+1;
intm=mid,n=唤裂last;
intk=0;

while(i<=m&&j<=n)
{
if(a[i]>=a[j])
temp[k++]=a[i++];
else
temp[k++]=a[j++];
}

while(i<=m)
temp[k++]=a[i++];

while(j<=n)
temp[k++]=a[j++];

for(i=0;i<k;i++)
a[first+i]=temp[i];
}
voidmergesort(inta[],intfirst,intlast,inttemp[])
{
if(first<last)
{
intmid=(first+last)/2;
mergesort(a,first,mid,temp);//左边有序
mergesort(a,mid+1,last,temp);//右边有序
mergearray(a,first,mid,last,temp);//再将二个有序数列合并
}
}

intmain(){
intarr[]={55,2,6,89,100,21,4,78,5,18};//举例数组,赋值请自行更改,或者用随机数生成
intn=10;
inti=0;
mergesort(arr,0,n-1,b);
while(i<n)
{
printf("%5d",arr[i]);
i++;
}
printf(" ");
}

归并操作(从小到大排序)

归并操作(merge),也叫归并算法,指的是将两个顺序序列合并成一个顺序序列的方法。

如设有数列{6,202,100,301,38,8,1}

初始状态:6,202,100,301,38,8,1

第一次归并后:{6,202},{100,301},{8,38},{1},比较次数:3;

第二次归并后:{6,100,202,301},{1,8,38},比较次数:4;

第三次归并后:{1,6,8,38,100,202,301},比较次数:5;

总的比较次数为:3+4+5=12,;

逆序数为14;

算法描述(从小到大排序)

归并操作的工作原理如下:

第一步:申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列

第二步:设定两个指针,最初位置分别为两个已经排序序列的起始位置

第三步:比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置

重复步骤3直到某一指针超出序列尾

将另一序列剩下的所有元素直接复制到合并序列尾

㈧ 归并排序

归并排序 (Merge sort,或mergesort),是创建在归并操作上的一种有效的排序算法,效率为 。1945 年由约翰·冯·诺伊曼首次提出。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用,且各层分治递归可以同时进行。

这里面提到了两个概念,分别是 分治(法) 递归 ,它们是什么呢?

分治法(Divide and Conquer)是基于多路分支递归求和的一种很重要的算法范式。字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多凯宏的相同或相似的子问题,再把子问题分成更小的子问题,直到最后子问题可以简单的直接求解,原问题的解就是子问题的解的合并。这个技巧是很多高效算法的基础,如排序算法中的快速排序和归并排序,傅立叶变换中的快速傅立叶变换…

分治模式在每层递归时都有三个步骤:

递归(英语:Recursion),又译为递回, 在数学和计算机科学中,递归指由一种(或多种)简单的基本情况定义的一类对象或方法,并规定其他所有情况都能被还原为其基本情况,如函数的定义中使用函数自身的方法。递归一词还较常用于描述以自相似方法重复事物的过程。 例如,当两面镜子相互之间睁丛近似平行时,镜中嵌套的图像是以无限递归的形式出现的。 也可以理解为自我复制的过程。

归并排序算法完全遵循分治模式,直观上,其操作步骤如下:

当待排序的序列长度为 1 时,递归“开始回升”,在这种情况下无须作任何工作,因为长度为 1 的每个序列都已排好序。

MERGE 的详细工作过程如下:

我们必须证明第 12~17 行 for 循环的第一次迭代之前该循环不变式成立,且在该循环的每次迭代时保持该不变式,当循环终止时,该不变式须提供一种有用的性质来证明算法的正确性。

前面我们分析了分治算法的过程,我们可以把 MERGE 作为归并排序算法中的一个子程序来用。

上面已经对分治法做悉孙樱了正确性证明,归并排序的正确性不言而喻。

分治算法运行时间的递归式来自基本模式的三个步骤,即分解、解决和合并。假设 T(n) 是规模为 n 的一个问题的运行时间。若问题规模足够小,如对某个常量 c,n≤c,则直接求解需要常量时间,可以将其写成 O(1)。假设把原问题分解成 a 个子问题,每个子问题的规模是原问题的 1/b。为了求解一个规模为 n/b 的子问题,需要 T(n/b) 的时间,所以需要 aT(n/b) 的时间来求解 a 个子问题。如果分解问题成子问题需要时间 D(n),合并子问题的解成原问题的解需要时间 C(n),那么得到递归式:

现在我们来讨论归并排序。假定问题规模是 2 的幂(不是 2 的幂时也能正确地工作),归并排序一个元素的时间是常量,当有 n>1 个元素时,分解运行的时间如下:

为了分析归并排序,我们可以将 D(n) 与 C(n) 相加,即把一个 函数与另一个 函数相加,得到的和是一个 n 的线性函数,即 。把它与来自“解决”步骤的项 2T(n/2) 相加,将给出归并排序的最坏情况的运行时间

将递归式重写,得到

其中,常量 c 代表求解规模为 1 的问题所需要的时间以及在分解步骤与合并步骤处理每个数组元素所需要的时间。(相同的常量一般不可能刚好即代表求解规模为 1 的问题的时间又代表分解步骤与合并步骤处理每个数组元素的时间。通过假设 c 为这两个时间的较大者并认为我们的递归式将给出运行时间的一个上界,或者通过假设 c 为这两个时间的较小者并认为我们的递归式将给出运行时间的下界,我们可以暂时回避这个问题。两个界的阶都是 ,合在一起将给出运行时间为 )。

求解递归式的过程如下图所示:

可以看出,树根 cn 通过递归分解,直到规模降为 1 后,每个子问题只要代价 c。分解步骤一共经历了 次,即树高为 层,每层的代价为 cn,因此总代价为 。

上面我们已经知道了,总代价为 ,忽略低阶项和常量 c,归并排序的时间复杂度为 O(nlogn)。

归并排序的合并函数,在合并两个有序数组为一个有序数组时,需要借助额外的存储空间,但是这个申请额外的内存空间,会在合并完成之后释放,因此,在任意时刻,只会有一个临时的内存空间在使用,临时内存空间最大也不会超过 n 个数据的大小,所以空间复杂度是 O(n)。

Javascript 递归版

Go

迭代版

递归版

㈨ 归并排序的算法原理是什么

归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用,归并排序将两个已排序的表合并成一个表。
归并排序基本原理

通过对若干个有序结点序列的归并来实现排序。
所谓归并是指将若干个已排好序的部分合并成一个有序的部分。

归并排序基本思想

设两个有序的子序列(相当于输入序列)放在同一序列中相邻的位置上:array[low..m],array[m + 1..high],先将它们合并到一个局部的暂存序列 temp (相当于输出序列)中,待合并完成后将 temp 复制回 array[low..high]中,从而完成排序。

在具体的合并过程中,设置 i,j 和 p 三个指针,其初值分别指向这三个记录区的起始位置。合并时依次比较 array[i] 和 array[j] 的关键字,取关键字较小(或较大)的记录复制到 temp[p] 中,然后将被复制记录的指针 i 或 j 加 1,以及指向复制位置的指针 p加 1。重复这一过程直至两个输入的子序列有一个已全部复制完毕(不妨称其为空),此时将另一非空的子序列中剩余记录依次复制到 array 中即可。

㈩ 小学语文的归并法是什么意思

这是概括段落大意时常用的方法之一。一个段落中的几层意思是并列的,很难分辨主次,概括段意时,就必须把几个并列的意思合并起来进行概括。
比如《鲸》的段意: 鲸的身子这么大,它们吃什么呢?须鲸主要吃虾和小鱼。它们在海洋里游的时候,张着大嘴,把许多小鱼小虾连同海水一齐吸进嘴里,然后闭上嘴,把海水从须板中间滤出来,把小鱼小虾吞进肚子里,一顿就可以吃两千多公斤。齿鲸主要吃旅局大鱼和海兽。它们遇到大鱼和海兽,就凶猛地扑上去,用锋利的牙齿咬住,很快就吃掉。蠢镇滑有一种号称“海中之虎”的虎鲸,常常好几十头结成一群,围住一头三十多吨重的长须鲸,几个小时就能把它吃光。
鲸跟牛羊一样用肺呼吸,这也说明它不属于鱼类。鲸的鼻孔长在脑袋顶上,呼气的时候浮出海面,从鼻孔喷出来的气形成一股水柱,就像花园里的喷泉一样;等肺里吸足了气,再潜入水中。鲸隔一定的时间必须呼吸一次。不同种类的鲸,喷出的气形成的水柱也不一样:须鲸的水柱是垂直的,又细又高;齿鲸的水柱是倾斜的,又粗又矮。有经验的人根据水柱的形状,就可以判断鲸的种类和大小。
鲸每天都要睡觉。睡觉的时候,总是几头聚在一起,它们通常会找一个比较安全的地方,头朝里,尾巴向外,围成一圈,静静地浮在海面上。如果听到什么声响,它们立即四散游开。
鲸是胎生的,幼鲸靠吃母鲸的奶长大。这些特征也说明鲸是哺乳动物。长须鲸刚生下来就有十多米长,七千公斤重,一天能长三十公斤到五十公斤,两三年就可以长成大鲸。鲸的寿带腊命很长,一般可以活几十年到一百年。
这几段文字分别从鲸的食物、呼吸、睡眠、生长等四个方面介绍鲸,所以可将其段意归纳为鲸的生活习性 。

热点内容
scratch少儿编程课程 发布:2025-04-16 17:11:44 浏览:640
荣耀x10从哪里设置密码 发布:2025-04-16 17:11:43 浏览:368
java从入门到精通视频 发布:2025-04-16 17:11:43 浏览:86
php微信接口教程 发布:2025-04-16 17:07:30 浏览:310
android实现阴影 发布:2025-04-16 16:50:08 浏览:794
粉笔直播课缓存 发布:2025-04-16 16:31:21 浏览:346
机顶盒都有什么配置 发布:2025-04-16 16:24:37 浏览:213
编写手游反编译都需要学习什么 发布:2025-04-16 16:19:36 浏览:817
proteus编译文件位置 发布:2025-04-16 16:18:44 浏览:367
土压缩的本质 发布:2025-04-16 16:13:21 浏览:594