当前位置:首页 » 操作系统 » 算法替代法

算法替代法

发布时间: 2023-05-28 02:28:30

Ⅰ 古典加密算法有哪些 古典加密算法

世界上最早的一种密码产生于公元前两世纪。是由一位希腊人提出的,人们称之为
棋盘密码,原因为该密码将26个字母放在5×5的方格里,i,j放在一个格子里,具体情
况如下表所示
1 2 3 4 5
1 a b c 搜索d e
2 f g h i,j k
3 l m n o p
4 q r s t u
5 v w x y z
这样,每个字母就对应了由两个数构成的字符αβ,α是该字母所在行的标号,β是列
标号。如c对应13,s对应43等。如果接收到密文为
43 15 13 45 42 15 32 15 43 43 11 22 15
则对应的明文即为secure message。
另一种具有代表性的密码是凯撒密码。它是将英文字母向前推移k位。如k=5,则密
文字母与明文与如下对应关系
a b c d e f g h i j k l m n o p q r s t u v w x y z
F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
于是对应于明文secure message,可得密文为XJHZWJRJXXFLJ。此时,k就是密钥。为了
传送方便,可以将26个字母一一对应于从0到25的26个整数。如a对1,b对2,……,y对
25,z对0。这样凯撒加密变换实际就是一个同余式
c≡m+k mod 26
其中m是明文字母对应的数,c是与明文对应的密文的数。
随后,为了提高凯撒密码的安全性,人们对凯撒密码进行了改进。选取k,b作为两
个参数,其中要求k与26互素,明文与密文的对应规则为
c≡km+b mod 26
可以看出,k=1就是前面提到的凯撒密码。于是这种加密变换是凯撒野加密变换的
推广,并且其保密程度也比凯撒密码高。
以上介绍的密码体制都属于单表置换。意思是一个明文字母对应的密文字母是确定
的。根据这个特点,利用频率分析可以对这样的密码体制进行有效的攻击。方法是在大
量的书籍、报刊和文章中,统计各个字母出现的频率。例如,e出现的次数最多,其次
是t,a,o,I等等。破译者通过对密文中各字母出现频率的分析,结合自然语言的字母频
率特征,就可以将该密码体制破译。
鉴于单表置换密码体制具有这样的攻击弱点,人们自然就会想办法对其进行改进,
来弥补这个弱点,增加抗攻击能力。法国密码学家维吉尼亚于1586年提出一个种多表式
密码,即一个明文字母可以表示成多个密文字母。其原理是这样的:给出密钥
K=k[1]k[2]…k[n],若明文为M=m[1]m[2]…m[n],则对应的密文为C=c[1]c[2]…c[n]。
其中C[i]=(m[i]+k[i]) mod 26。例如,若明文M为data security,密钥k=best,将明
文分解为长为4的序列data security,对每4个字母,用k=best加密后得密文为
C=EELT TIUN SMLR
从中可以看出,当K为一个字母时,就是凯撒密码。而且容易看出,K越长,保密程
度就越高。显然这样的密码体制比单表置换密码体制具有更强的抗攻击能力,而且其加
密、解密均可用所谓的维吉尼亚方阵来进行,从而在操作上简单易行。该密码可用所谓
的维吉尼亚方阵来进行,从而在操作上简单易行。该密码曾被认为是三百年内破译不了
的密码,因而这种密码在今天仍被使用着。
古典密码的发展已有悠久的历史了。尽管这些密码大都比较简单,但它在今天仍有
其参考价值。世界上最早的一种密码产生于公元前两世纪。是由一位希腊人提出的,人们称之为
棋盘密码,原因为该密码将26个字母放在5×5的方格里,i,j放在一个格子里,具体情
况如下表所示
1 2 3 4 5
1 a b c 搜索d e
2 f g h i,j k
3 l m n o p
4 q r s t u
5 v w x y z
这样,每个字母就对应了由两个数构成的字符αβ,α是该字母所在行的标号,β是列
标号。如c对应13,s对应43等。如果接收到密文为
43 15 13 45 42 15 32 15 43 43 11 22 15
则对应的明文即为secure message。
另一种具有代表性的密码是凯撒密码。它是将英文字母向前推移k位。如k=5,则密
文字母与明文与如下对应关系
a b c d e f g h i j k l m n o p q r s t u v w x y z
F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
于是对应于明文secure message,可得密文为XJHZWJRJXXFLJ。此时,k就是密钥。为了
传送方便,可以将26个字母一一对应于从0到25的26个整数。如a对1,b对2,……,y对
25,z对0。这样凯撒加密变换实际就是一个同余式
c≡m+k mod 26
其中m是明文字母对应的数,c是与明文对应的密文的数。
随后,为了提高凯撒密码的安全性,人们对凯撒密码进行了改进。选取k,b作为两
个参数,其中要求k与26互素,明文与密文的对应规则为
c≡km+b mod 26
可以看出,k=1就是前面提到的凯撒密码。于是这种加密变换是凯撒野加密变换的
推广,并且其保密程度也比凯撒密码高。
以上介绍的密码体制都属于单表置换。意思是一个明文字母对应的密文字母是确定
的。根据这个特点,利用频率分析可以对这样的密码体制进行有效的攻击。方法是在大
量的书籍、报刊和文章中,统计各个字母出现的频率。例如,e出现的次数最多,其次
是t,a,o,I等等。破译者通过对密文中各字母出现频率的分析,结合自然语言的字母频
率特征,就可以将该密码体制破译。
鉴于单表置换密码体制具有这样的攻击弱点,人们自然就会想办法对其进行改进,
来弥补这个弱点,增加抗攻击能力。法国密码学家维吉尼亚于1586年提出一个种多表式
密码,即一个明文字母可以表示成多个密文字母。其原理是这样的:给出密钥
K=k[1]k[2]…k[n],若明文为M=m[1]m[2]…m[n],则对应的密文为C=c[1]c[2]…c[n]。
其中C[i]=(m[i]+k[i]) mod 26。例如,若明文M为data security,密钥k=best,将明
文分解为长为4的序列data security,对每4个字母,用k=best加密后得密文为
C=EELT TIUN SMLR
从中可以看出,当K为一个字母时,就是凯撒密码。而且容易看出,K越长,保密程
度就越高。显然这样的密码体制比单表置换密码体制具有更强的抗攻击能力,而且其加
密、解密均可用所谓的维吉尼亚方阵来进行,从而在操作上简单易行。该密码可用所谓
的维吉尼亚方阵来进行,从而在操作上简单易行。该密码曾被认为是三百年内破译不了
的密码,因而这种密码在今天仍被使用着。
古典密码的发展已有悠久的历史了。尽管这些密码大都比较简单,但它在今天仍有
其参考价值。

Ⅱ 8/42-8/32怎么简便算法计算

第一种可以把8分解成2和6,用42减2等于40,再去40减6,40减6可以用破十法。

第二种是从42里先提出10,用10-8=2,在用32+2=34。

应用题的解题并友思路:

(1)替代法有些应用题,给出两个或两个以上的的未知量的关系,明罩要求求这些未知量,思考绝槐槐的时候,可以根据题中所给的条件,用一个未知量代替另一个未知量,使数据量关系单一化。从而找到解题途径。(如倍数关系应用题)

(2)假设法有些应用题要求两个或两个以上的未知量,思考的时候需要先提出某种假设,然后按照题里的己知量进行推算出来。根据数据量上出现的矛盾,再进行适当调整,最后找到正确答案。( 如工程问题)

Ⅲ 求泰勒公式问题

因为这个题目的算法是替代法,先宏滚将t=sinx 然后求出e^t的铅颂三阶泰勒公式展开式,然后再求sinx三阶泰勒公式蔽激余,再代入先前求出的e^t的泰勒公式,从而求出结果,没有可以随意复合的。

Ⅳ 怎样测量1元银币的周长至少写出两种测量方法

1、替腔余迟代法:细线一根,绕毁做银币一周,测量线的伍李长度
2、标准圆周长算法:用直尺测得银币直径(测量时一定要让尺的刻度边经过银币中心点),然后用圆的周长公式计算

方法1相对要准确一些(如果心灵手巧的话)
方法2中要读取直径必然有误差,圆周率π要取近似值,进一步产生误差。

Ⅳ 什么算法可以替代扰动观察法

电导增量法可以替代扰动观察法。电导增量法也是常用的一种MPPT控制竖粗方法,是对扰动观察尘搜法的改进。其控制思想与扰动观察法类似派纤历,也是利用dP/dV的方向进行最大功率点跟踪控制,只是太阳能电池工作在最大功率点时控制有所不同。

Ⅵ Cache 的替换算法中,( )算法计数器位数多,实现困难。

【答案】:C
最常用的Cache 的替换算法有三种:(1)随机算法。这是最简单的替换算法。随机法完全竖隐不管cache块过去、现在及将来的使用情况,简单地根据一个随机数,选择一块替换掉。(2)先进先出(First In and First Out,FIFO)算法。按调入cache的先后决定淘汰的顺序,即在需要更新时,将最先进入cache的块作为被替换的块。这种方法要求为每块做一记录,记下它们进入cache的先后次序。这种方法容易实现,而且系统开销小。其缺点是可能会把一些需要经常使用的程序块(如循环程序)替庆兆换掉。(3)近期最少使用(Least Recently Used,LRU)算法。LRU算法是把CPU近期最少使用的块作为被替换的块。这种替换方法需要随时记录cache中各块的使用情况,以便确定哪个块是近期最少使用的块。LRU算法相对合理,但实现起来比较复杂,系统开销较大。通常需余差厅要对每一块设置一个称为"年龄计数器"的硬件或软件计数器,用以记录其被使用的情况。

Ⅶ 计算机组成原理-----替换算法

fifo先进先出算法 有abc 三个存储空间 每个空间能存放一个元素按照队列方式
进出,以此是 a b c 命中率=abc中访问到的次数/元素个数
------------------2 1 0 此时存储空间已满 要调用新的元素就要出队列
------------------4 2 1 下一个元素2在b内 访问成功一次
------------------。。。。 以此类推
--------------最后3 1 2 最后一个元素又从存储单元里访问到一次 所以2/11

fifo+lru:同上加上最近虽少使用。列出上面的表格按队列进入 把最长时间没使用到的替换掉 一共访问到2这个元素3次 所以就是3/11

Ⅷ 正元替换法

正元替换法(正向翻译或正则化)是一种计算机视觉中常用的技巧,可以用来对图像中的对象进行识别和分割。该方法的原理是,将原始图前纯像中的一些像素点用特定的算法替换成另外一些像素点,使得图像中的对象的特征变得更加明显,从而更容易被识别和分析。

具体来说,正元替换法可以分为两个步骤:特征提取和像素替换。

1. 特征提取

在原始图像中进行特征提取,将每个像素点的RGB颜色空间表示慧哪咐转换成灰度表示,获得该像素点的特征信息。常用的特征提取方法包括卷积神经网络(CNN)和循环神经网络(RNN)等。

2. 像素替换

将提取出来的特征信息应用到像素池中,对每个像素点进行替换。每个像素点的替换可以是多个不同缓郑的值,这些不同的值可以是相似度更高、颜色更相似的相邻像素点的值。同时,还可以通过替换某些像素点的颜色,使得图像中的某些区域变得更加明显,从而更容易被识别。

在实际应用中,正元替换法可以用于多种任务,包括目标检测、语义分割、图像识别等。常见的正元替换算法包括基于卷积神经网络(CNN)的替换算法和基于循环神经网络(RNN)的替换算法。在训练模型时,需要将正元替换法应用于大量的训练图像,以学习到最佳的特征表示和像素替换策略。

Ⅸ 使Cache命中率最高的替换算法是什么

是替换最近最少使用的块算法。

Cache替换算法是影旦唤响代理缓存系统性能的一个重要因素,一个好的Cache替换算法内可以产生较高的命中率。已经提出的算法可以划分为以下三类:

传统替换算法及其直接演化,其代表算法有:

①LRU(LeastRecentlyUsed)算法模李凯:将最近最少使用的内容替换出Cache;

②LFU(LeaseFrequentlyUsed)算法。

(9)算法替代法扩展阅读:

运行程序设置:

1、打开开始菜单,打开运行框。如果开始菜单中没有这个选项,请按键盘windows+r组合键来打开运行。

Ⅹ 古典加密算法有哪些

古典加密算法分为替代算法和置换移位法。

1、替代算法

替代算法用明文的字母由其他字母或数字或符号所代替。最着名的替代算法是恺撒密码。凯撒密码的原理很简单,其实就是单字母替换。

例子:

明文:abcdefghijklmnopq

密文:defghijklmnopqrst

2、置换移位法

使用置换移位法的最着名的一种密码称为维吉尼亚密码。它以置换移位为基础的周期替换密码。

在裤旦维吉尼亚密码中,加密密钥是一个可被任意指定的字符串。加密密钥字符依次逐个作用于明文信息字符。明文信息长度往往会大于密钥字符串长度,而明文的每一个字符都需要有一个对应的密钥字符,因此密钥就需要不断循环,直至明文每一个字符都对应一个密钥字符。

其他常见的加密算法

1、DES算法是密码体制中的对称密码体制,把64位的明文输入块变为64位的密文输出块,它所使用的密钥也是64位。

2、3DES是基于DES的对称算法,对一块数据用三个不同的密钥进行三次加密,强度更高。

3、RC2和RC4是对称算法,用变长密钥对大量数据进行加密,比DES快。

4、IDEA算法是在DES算法的基础上发展出来的,是作为迭代的分组密码实现的,使用128位的密钥和8个循环。

5、RSA是由RSA公司发明,是一个支持变长密钥的公共密钥算法,需要加密的文件块的长度也是可变的,非对称算法。

6、DSA,即数字签名算法,是一种标准的 DSS(数字签名标准),严格来说不算加密算法。

7、AES是高级加密标准对称算法,是胡肆扰下一代的加密算法标雹辩准,速度快,安全级别高,在21世纪AES 标准的一个实现是 Rijndael算法。

热点内容
scratch少儿编程课程 发布:2025-04-16 17:11:44 浏览:642
荣耀x10从哪里设置密码 发布:2025-04-16 17:11:43 浏览:368
java从入门到精通视频 发布:2025-04-16 17:11:43 浏览:88
php微信接口教程 发布:2025-04-16 17:07:30 浏览:310
android实现阴影 发布:2025-04-16 16:50:08 浏览:794
粉笔直播课缓存 发布:2025-04-16 16:31:21 浏览:346
机顶盒都有什么配置 发布:2025-04-16 16:24:37 浏览:213
编写手游反编译都需要学习什么 发布:2025-04-16 16:19:36 浏览:817
proteus编译文件位置 发布:2025-04-16 16:18:44 浏览:367
土压缩的本质 发布:2025-04-16 16:13:21 浏览:594