当前位置:首页 » 操作系统 » 遗传算法流程图

遗传算法流程图

发布时间: 2022-02-04 04:25:14

Ⅰ 如何利用遗传算法求解问题试举例说明求解过程急急急!!!

遗传算法将目标函数转换为适应度函数,评估,复制,交叉,变异种群中的个体,并从中选出适应性最强的个体,算法的最优解就是这个个体。具体流程是:1.初始种群的产生。2.适应度函数的构造。3.选择和繁殖。4.终止条件。

Ⅱ 蚂蚁算法的思想进化公式及遗传算法的算法流程图

遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它最初由美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专着《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Holland教授所提出的GA通常为简单遗传算法(SGA)。

Ⅲ 遗传算法的优缺点

优点:

1、遗传算法是以决策变量的编码作为运算对象,可以直接对集合、序列、矩阵、树、图等结构对象进行操作。这样的方式一方面有助于模拟生物的基因、染色体和遗传进化的过程,方便遗传操作算子的运用。

另一方面也使得遗传算法具有广泛的应用领域,如函数优化、生产调度、自动控制、图像处理、机器学习、数据挖掘等领域。

2、遗传算法直接以目标函数值作为搜索信息。它仅仅使用适应度函数值来度量个体的优良程度,不涉及目标函数值求导求微分的过程。因为在现实中很多目标函数是很难求导的,甚至是不存在导数的,所以这一点也使得遗传算法显示出高度的优越性。

3、遗传算法具有群体搜索的特性。它的搜索过程是从一个具有多个个体的初始群体P(0)开始的,一方面可以有效地避免搜索一些不必搜索的点。

另一方面由于传统的单点搜索方法在对多峰分布的搜索空间进行搜索时很容易陷入局部某个单峰的极值点,而遗传算法的群体搜索特性却可以避免这样的问题,因而可以体现出遗传算法的并行化和较好的全局搜索性。

4、遗传算法基于概率规则,而不是确定性规则。这使得搜索更为灵活,参数对其搜索效果的影响也尽可能的小。

5、遗传算法具有可扩展性,易于与其他技术混合使用。以上几点便是遗传算法作为优化算法所具备的优点。

缺点:

1、遗传算法在进行编码时容易出现不规范不准确的问题。

2、由于单一的遗传算法编码不能全面将优化问题的约束表示出来,因此需要考虑对不可行解采用阈值,进而增加了工作量和求解时间。

3、遗传算法效率通常低于其他传统的优化方法。

4、遗传算法容易出现过早收敛的问题。

(3)遗传算法流程图扩展阅读

遗传算法的机理相对复杂,在Matlab中已经由封装好的工具箱命令,通过调用就能够十分方便的使用遗传算法。

函数ga:[x, fval,reason]= ga(@fitnessfun, nvars, options)x是最优解,fval是最优值,@fitnessness是目标函数,nvars是自变量个数,options是其他属性设置。系统默认求最小值,所以在求最大值时应在写函数文档时加负号。

为了设置options,需要用到下面这个函数:options=gaoptimset('PropertyName1', 'PropertyValue1', 'PropertyName2', 'PropertyValue2','PropertyName3', 'PropertyValue3', ...)通过这个函数就能够实现对部分遗传算法的参数的设置。

Ⅳ 关于遗传算法

遗传算法(Genetic Algorithm,简称GA)是美国 Michigan大学的 John Golland提出的一种建立在自然选择和群体遗传学机理基础上的随机、迭代、进化、具有广泛适用性的搜索方法。现在已被广泛用于学习、优化、自适应等问题中。图4-1 给出了 GA搜索过程的直观描述。图中曲线对应一个具有复杂搜索空间(多峰空间)的问题。纵坐标表示适应度函数(目标函数),其值越大相应的解越优。横坐标表示搜索点。显然,用解析方法求解该目标函数是困难的。采用 GA时,首先随机挑选若干个搜索点,然后分别从这些搜索点开始并行搜索。在搜索过程中,仅靠适应度来反复指导和执行 GA 搜索。在经过若干代的进化后,搜索点后都具有较高的适应度并接近最优解。

一个简单GA由复制、杂交和变异三个遗传算子组成:

图4-2 常规遗传算法流程图

Ⅳ C语言遗传算法在求解TSP问题 毕业论文+源代码



摘要
I
Abstract
II


1
第一章
基本遗传算法
2
1.1
遗传算法的产生及发展
3
1.2
基本原理
3
1.3
遗传算法的特点
3
1.4
基本遗传算法描述
5
1.5
遗传算法构造流程
6
第二章
遗传算法的实现技术
6
2.1
编码方法
7
2.1.1
二进制编码
7
2.1.2
格雷码编码
7
2.1.3
符点数编码
8
2.1.4
参数编码
8
2.2
适应度函数
10
2.3
选择算子
10
2.4
交叉算子
10
2.4.1
单点交叉算子
10
2.4.2
双点交叉算子
11
2.4.3
均匀交叉算子
11
2.4.4
部分映射交叉
11
2.4.5
顺序交叉
12
2.5
变异算子
12
2.6
运行参数
12
2.7
约束条件的处理方法
13
2.8
遗传算法流程图
14
第三章
遗传算法在TSP上的应用
15
3.1
TSP问题的建模与描述
15
3.2
对TSP的遗传基因编码方法
16
3.3
针对TSP的遗传操作算子
17
3.3.1
选择算子
17
3.3.1.1
轮盘赌选择
17
3.3.1.2
最优保存策略选择
17
3.3.2
交叉算子
20
3.3.2.1
单点交叉
20
3.3.2.2
部分映射交叉
21
3.3.3
变异算子
23
3.4
TSP的混和遗传算法
26
第四章
实例分析
27
4.1
测试数据
27
4.2
测试结果
27
4.3
结果分析
27


TSP
(Traveling
Salesman
Problem)旅行商问题是一类典型的NP完全问题,遗传算法是解决NP问题的一种较理想的方法。文章首先介绍了基本遗传算法的基本原理、特点及其基本实现技术;接着针对TSP
问题,论述了遗传算法在编码表示和遗传算子(包括选择算子、交叉算子变异算子这三种算子)等方面的应用情况,分别指出几种常用的编码方法的优点和缺点,并且结合TSP的运行实例详细分析了基本遗传算法的4个运行参数群体大小、遗传算法的终止进化代数、交叉概率、变异概率,对遗传算法的求解结果和求解效率的影响,经过多次的测试设定出了它们一组比较合理的取值。最后,简单说明了混合遗传算法在求解TSP问题中的应用并对遗传算法解决TSP问题的前景提出了展望。
关键词:TSP
遗传算法
遗传算子
编码
@@@需要的话按我的名字找我吧

Ⅵ 求基于遗传算法的TPS的matlab程序,坐标手动输入

1. 遗传算法实现过程

现实生活中很多问题都可以转换为函数优化问题,所以本文将以函数优化问题作为背景,对GA的实现过程进行探讨。大部分函数优化问题都可以写成求最大值或者最小值的形式,为了不是一般性,我们可以将所有求最优值的情况都转换成求最大值的形式,例如,求函数f(x)的最大值,

clip_image002

若是求函数f(x)的最小值,可以将其转换成g(x)=-f(x),然后求g(x)的最大值,

clip_image004

这里x可以是一个变量,也可是是一个由k个变量组成的向量, x=(x1, x2, …, xk)。每个xi, i=1,2,…,k, 其定义域为Di,Di=[ai, bi]。

一般规定f(x)在其定义域内只取正值,若不满足,可以将其转换成以下形式,

clip_image006

其中C是一个正常数。

1.1 编码与解码

要实现遗传算法首先需要弄清楚如何对求解问题进行编码和解码。对于函数优化问题,一般来说,有两种编码方式,一是实数编码,一是二进制编码,两者各有优缺点,二进制编码具有稳定性高、种群多样性大等优点,但是需要的存储空间大,需要解码过程并且难以理解;而实数编码直接用实数表示基因,容易理解并且不要解码过程,但是容易过早收敛,从而陷入局部最优。本文以最常用的二进制编码为例,说明遗传编码的过程。

从遗传算法求解的过程来看,需要处理好两个空间的问题,一个是编码空间,另一个是解空间,如下图所示

clip_image007

从解空间到编码空间的映射过程成为编码过程;从编码空间到解空间的映射过程成为解码过程。下面就以求解一个简单的一维函数f(x) = -(x-1)^2+4, x的取值范围为[-1,3]最大值为例,来说明编码及解码过程。

编码:

在编码之前需要确定求解的精度,在这里,我们设定求解的精度为小数点后四位,即1e-4。这样可以将每个自变量xi的解空间划分为clip_image011个等分。以上面这个函数为例,即可以将x的解空间划分为(3-(-1))*1e+4=40000个等分。使ni满足clip_image013,这里ni表示使上式成立的最小整数,即表示自变量xi的基因串的长度。因为215<40000<216 ,这里ni取16。例如0000110110000101就表示一个解空间中的基因串。表示所有自变量x=(x1, x2, …, xk)的二进制串的总长度称为一个染色体(Chromosome)的长度或者一个个体(Indivial)的长度,clip_image015。编码过程一般在实现遗传算法之前需要指定。

解码:

解码即将编码空间中的基因串翻译成解空间中的自变量的实际值的过程。对于二进制编码而言,每个二进制基因串都可以这样翻译成一个十进制实数值,clip_image017。例如基因串0000110110000101,可以翻译为clip_image019,这里二进制基因串转变成十进制是从左至右进行的。

1.2 初始化种群

在开始遗传算法迭代过程之前,需要对种群进行初始化。设种群大小为pop_size,每个染色体或个体的长度为chromo_size,种群的大小决定了种群的多样性,而染色体的长度则是由前述的编码过程决定的。一般随机生成初始种群,但是如果知道种群的实际分布,也可以按照此分布来生成初始种群。假设生成的初始种群为(v1, v2, …, vpop_size)。

1.3 选择操作

选择操作即从前代种群中选择个体到下一代种群的过程。一般根据个体适应度的分布来选择个体。以初始种群(v1, v2, …, vpop_size)为例,假设每个个体的适应度为(fitness(v1), fitness(v2),…, fitness(vpop_size)),一般适应度可以按照解码的过程进行计算。以轮盘赌的方式选择个体,如下图

clip_image020

随机转动一下轮盘,当轮盘停止转动时,若指针指向某个个体,则该个体被选中。很明显,具有较高适应度的个体比具有较低适应度的个体更有机会被选中。但是这种选择具有随机性,在选择的过程中可能会丢失掉比较好的个体,所以可以使用精英机制,将前代最优个体直接选到下一代中。

轮盘赌选择具体算法如下(这里假定种群中个体是按照适应度从小到大进行排列的,如果不是,可以按照某种排序算法对种群个体进行重排):

Selection Algorithm
var pop, pop_new;/*pop为前代种群,pop_new为下一代种群*/
var fitness_value, fitness_table;/*fitness_value为种群的适应度,fitness_table为种群累积适应度*/
for i=1:pop_size
r = rand*fitness_table(pop_size);/*随机生成一个随机数,在0和总适应度之间,因为fitness_table(pop_size)为最后一个个体的累积适应度,即为总适应度*/
first = 1;
last = pop_size;
mid = round((last+first)/2);
idx = -1;
/*下面按照排中法选择个体*/
while (first <= last) && (idx == -1)
if r > fitness_table(mid)
first = mid;
elseif r < fitness_table(mid)
last = mid;
else
idx = mid;
break;
end if
mid = round((last+first)/2);
if (last - first) == 1
idx = last;
break;
end if
end while

for j=1:chromo_size
pop_new(i,j)=pop(idx,j);
end for
end for
/*是否精英选择*/
if elitism
p = pop_size-1;
else
p = pop_size;
end if
for i=1:p
for j=1:chromo_size
pop(i,j) = pop_new(i,j);/*若是精英选择,则只将pop_new前pop_size-1个个体赋给pop,最后一个为前代最优个体保留*/
end for
end for
1.3 交叉操作

交叉操作是对任意两个个体进行的(在这里我们实现的算法是直接对相邻的两个个体进行的)。随机选择两个个体,如下图所示

clip_image001

然后随机生成一个实数0<=r<=1, 如果r<cross_rate, 0<cross_rate<1为交叉概率,则对这两个个体进行交叉,否则则不进行。如果需要进行交叉,再随机选择交叉位置(rand*chromo_size),如果等于0或者1,将不进行交叉。否则将交叉位置以后的二进制串进行对换(包括交叉位置)。(注意:有时候还可以进行多点交叉,但是这里只讨论单点交叉的情况)

单点交叉具体算法如下:

Crossover algorithm
for i=1:2:pop_size
if(rand < cross_rate)/*cross_rate为交叉概率*/
cross_pos = round(rand * chromo_size);/*交叉位置*/
if or (cross_pos == 0, cross_pos == 1)
continue;/*若交叉位置为0或1,则不进行交叉*/
end if
for j=cross_pos:chromo_size
pop(i,j)<->pop(i+1,j);/*交换*/
end for
end if
end for
1.4 变异操作

变异操作是对单个个体进行的。首先生成一个随机实数0<=r<=1, 如果r<mutate_rate,则对此个体进行变异操作, 0<mutate_rate<1为变异概率,一般为一个比较小的实数。对每一个个体,进行变异操作,如下图所示

clip_image001[4]

如个体需要进行变异操作,首先需要确定变异位置(rand*chromo_size),若为0则不进行变异,否则则对该位置的二进制数字进行变异:1变成0, 0变成1.(当然也可以选择多点进行变异)

单点变异的具体算法描述如下:

Mutation algorithm
for i=1:pop_size
if rand < mutate_rate/*mutate_rate为变异概率*/
mutate_pos = round(rand*chromo_size);/*变异位置*/
if mutate_pos == 0
continue;/*若变异位置为0,则不进行变异*/
end if
pop(i,mutate_pos) = 1 - pop(i, mutate_pos);/*将变异位置上的数字至反*/
end if
end for
1.5 遗传算法流程

遗传算法计算流程图如下图所示

clip_image001[6]

1.6 MATLAB程序实现

初始化:

%初始化种群
%pop_size: 种群大小
%chromo_size: 染色体长度

function initilize(pop_size, chromo_size)
global pop;
for i=1:pop_size
for j=1:chromo_size
pop(i,j) = round(rand);
end
end
clear i;
clear j;
计算适应度:(该函数应该根据具体问题进行修改,这里优化的函数是前述的一维函数)

%计算种群个体适应度,对不同的优化目标,此处需要改写
%pop_size: 种群大小
%chromo_size: 染色体长度

function fitness(pop_size, chromo_size)
global fitness_value;
global pop;
global G;
for i=1:pop_size
fitness_value(i) = 0.;
end

for i=1:pop_size
for j=1:chromo_size
if pop(i,j) == 1
fitness_value(i) = fitness_value(i)+2^(j-1);
end
end
fitness_value(i) = -1+fitness_value(i)*(3.-(-1.))/(2^chromo_size-1);
fitness_value(i) = -(fitness_value(i)-1).^2+4;
end

clear i;
clear j;
对个体按照适应度大小进行排序:

%对个体按适应度大小进行排序,并且保存最佳个体
%pop_size: 种群大小
%chromo_size: 染色体长度

function rank(pop_size, chromo_size)
global fitness_value;
global fitness_table;
global fitness_avg;
global best_fitness;
global best_indivial;
global best_generation;
global pop;
global G;

for i=1:pop_size
fitness_table(i) = 0.;
end

min = 1;
temp = 1;
temp1(chromo_size)=0;
for i=1:pop_size
min = i;
for j = i+1:pop_size
if fitness_value(j)<fitness_value(min);
min = j;
end
end
if min~=i
temp = fitness_value(i);
fitness_value(i) = fitness_value(min);
fitness_value(min) = temp;
for k = 1:chromo_size
temp1(k) = pop(i,k);
pop(i,k) = pop(min,k);
pop(min,k) = temp1(k);
end
end

end

for i=1:pop_size
if i==1
fitness_table(i) = fitness_table(i) + fitness_value(i);
else
fitness_table(i) = fitness_table(i-1) + fitness_value(i);
end
end
fitness_table
fitness_avg(G) = fitness_table(pop_size)/pop_size;

if fitness_value(pop_size) > best_fitness
best_fitness = fitness_value(pop_size);
best_generation = G;
for j=1:chromo_size
best_indivial(j) = pop(pop_size,j);
end
end

clear i;
clear j;
clear k;
clear min;
clear temp;
clear temp1;

选择操作:

%轮盘赌选择操作
%pop_size: 种群大小
%chromo_size: 染色体长度
%cross_rate: 是否精英选择

function selection(pop_size, chromo_size, elitism)
global pop;
global fitness_table;

for i=1:pop_size
r = rand * fitness_table(pop_size);
first = 1;
last = pop_size;
mid = round((last+first)/2);
idx = -1;
while (first <= last) && (idx == -1)
if r > fitness_table(mid)
first = mid;
elseif r < fitness_table(mid)
last = mid;
else
idx = mid;
break;
end
mid = round((last+first)/2);
if (last - first) == 1
idx = last;
break;
end
end

for j=1:chromo_size
pop_new(i,j)=pop(idx,j);
end
end
if elitism
p = pop_size-1;
else
p = pop_size;
end
for i=1:p
for j=1:chromo_size
pop(i,j) = pop_new(i,j);
end
end

clear i;
clear j;
clear pop_new;
clear first;
clear last;
clear idx;
clear mid;

交叉操作:

%单点交叉操作
%pop_size: 种群大小
%chromo_size: 染色体长度
%cross_rate: 交叉概率

function crossover(pop_size, chromo_size, cross_rate)
global pop;
for i=1:2:pop_size
if(rand < cross_rate)
cross_pos = round(rand * chromo_size);
if or (cross_pos == 0, cross_pos == 1)
continue;
end
for j=cross_pos:chromo_size
temp = pop(i,j);
pop(i,j) = pop(i+1,j);
pop(i+1,j) = temp;
end
end
end

clear i;
clear j;
clear temp;
clear cross_pos;

变异操作:

%单点变异操作
%pop_size: 种群大小
%chromo_size: 染色体长度
%cross_rate: 变异概率
function mutation(pop_size, chromo_size, mutate_rate)
global pop;

for i=1:pop_size
if rand < mutate_rate
mutate_pos = round(rand*chromo_size);
if mutate_pos == 0
continue;
end
pop(i,mutate_pos) = 1 - pop(i, mutate_pos);
end
end

clear i;
clear mutate_pos;
打印算法迭代过程:

%打印算法迭代过程
%generation_size: 迭代次数

function plotGA(generation_size)
global fitness_avg;
x = 1:1:generation_size;
y = fitness_avg;
plot(x,y)
算法主函数:

%遗传算法主函数
%pop_size: 输入种群大小
%chromo_size: 输入染色体长度
%generation_size: 输入迭代次数
%cross_rate: 输入交叉概率
%cross_rate: 输入变异概率
%elitism: 输入是否精英选择
%m: 输出最佳个体
%n: 输出最佳适应度
%p: 输出最佳个体出现代
%q: 输出最佳个体自变量值

function [m,n,p,q] = GeneticAlgorithm(pop_size, chromo_size, generation_size, cross_rate, mutate_rate, elitism)

global G ; %当前代
global fitness_value;%当前代适应度矩阵
global best_fitness;%历代最佳适应值
global fitness_avg;%历代平均适应值矩阵
global best_indivial;%历代最佳个体
global best_generation;%最佳个体出现代

fitness_avg = zeros(generation_size,1);

disp "hhee"

fitness_value(pop_size) = 0.;
best_fitness = 0.;
best_generation = 0;
initilize(pop_size, chromo_size);%初始化
for G=1:generation_size
fitness(pop_size, chromo_size); %计算适应度
rank(pop_size, chromo_size); %对个体按适应度大小进行排序
selection(pop_size, chromo_size, elitism);%选择操作
crossover(pop_size, chromo_size, cross_rate);%交叉操作
mutation(pop_size, chromo_size, mutate_rate);%变异操作
end
plotGA(generation_size);%打印算法迭代过程
m = best_indivial;%获得最佳个体
n = best_fitness;%获得最佳适应度
p = best_generation;%获得最佳个体出现代

%获得最佳个体变量值,对不同的优化目标,此处需要改写
q = 0.;
for j=1:chromo_size
if best_indivial(j) == 1
q = q+2^(j-1);
end
end
q = -1+q*(3.-(-1.))/(2^chromo_size-1);

clear i;
clear j;

2. 案例研究

对上一节中的函数进行优化,设置遗传算法相关参数,程序如下

function run_ga()
elitism = true;%选择精英操作
pop_size = 20;%种群大小
chromo_size = 16;%染色体大小
generation_size = 200;%迭代次数
cross_rate = 0.6;%交叉概率
mutate_rate = 0.01;%变异概率

[m,n,p,q] = GeneticAlgorithm(pop_size, chromo_size, generation_size, cross_rate, mutate_rate,elitism);
disp "最优个体"
m
disp "最优适应度"
n
disp "最优个体对应自变量值"
q
disp "得到最优结果的代数"
p

clear;

结果如下:

"最优个体"

m =

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

"最优适应度"

n =

4.0000

"最优个体对应自变量值"

q =

1.0000

"得到最优结果的代数"

p =

74

此结果非常准确。

Ⅶ 利用遗传算法求解区间[0, 31]上的二次函数y=x 2次方 的最大值

靠 你也太懒了

Ⅷ 遗传算法 简单程序应用

import java.awt.BorderLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;
import javax.swing.JTextField;

class Best {
public int generations; //最佳适应值代号
public String str; //最佳染色体
public double fitness; //最佳适应值
}

public class SGAFrame extends JFrame {

private JTextArea textArea;
private String str = "";
private Best best = null; //最佳染色体
private String[] ipop = new String[10]; //染色体
private int gernation = 0; //染色体代号
public static final int GENE = 22; //基因数
/**
* Launch the application
* @param args
*/
public static void main(String args[]) {
try {
SGAFrame frame = new SGAFrame();
frame.setVisible(true);
} catch (Exception e) {
e.printStackTrace();
}
}

/**
* Create the frame
*/
public SGAFrame() {
super();

this.ipop = inialPops();

getContentPane().setLayout(null);
setBounds(100, 100, 461, 277);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

final JLabel label = new JLabel();
label.setText("X的区间:");
label.setBounds(23, 10, 88, 15);
getContentPane().add(label);

final JLabel label_1 = new JLabel();
label_1.setText("[-255,255]");
label_1.setBounds(92, 10, 84, 15);
getContentPane().add(label_1);

final JButton button = new JButton();
button.addActionListener(new ActionListener() {
public void actionPerformed(final ActionEvent e) {
SGAFrame s = new SGAFrame();
str = str + s.process() + "\n";
textArea.setText(str);
}
});
button.setText("求最小值");
button.setBounds(323, 27, 99, 23);
getContentPane().add(button);

final JLabel label_2 = new JLabel();
label_2.setText("利用标准遗传算法求解函数f(x)=(x-5)*(x-5)的最小值:");
label_2.setBounds(23, 31, 318, 15);
getContentPane().add(label_2);

final JPanel panel = new JPanel();
panel.setLayout(new BorderLayout());
panel.setBounds(23, 65, 399, 164);
getContentPane().add(panel);

final JScrollPane scrollPane = new JScrollPane();
panel.add(scrollPane, BorderLayout.CENTER);

textArea = new JTextArea();
scrollPane.setViewportView(textArea);
//
}

/**
* 初始化一条染色体(用二进制字符串表示)
* @return 一条染色体
*/
private String inialPop() {
String res = "";
for (int i = 0; i < GENE; i++) {
if (Math.random() > 0.5) {
res += "0";
} else {
res += "1";
}
}
return res;
}

/**
* 初始化一组染色体
* @return 染色体组
*/
private String[] inialPops() {
String[] ipop = new String[10];
for (int i = 0; i < 10; i++) {
ipop[i] = inialPop();
}
return ipop;
}

/**
* 将染色体转换成x的值
* @param str 染色体
* @return 染色体的适应值
*/
private double calculatefitnessvalue(String str) {
int b = Integer.parseInt(str, 2);
//String str1 = "" + "/n";
double x = -255 + b * (255 - (-255)) / (Math.pow(2, GENE) - 1);
//System.out.println("X = " + x);
double fitness = -(x - 5) * (x - 5);
//System.out.println("f(x)=" + fitness);
//str1 = str1 + "X=" + x + "/n"
//+ "f(x)=" + "fitness" + "/n";
//textArea.setText(str1);

return fitness;
}

/**
* 计算群体上每个个体的适应度值;
* 按由个体适应度值所决定的某个规则选择将进入下一代的个体;
*/
private void select() {
double evals[] = new double[10]; // 所有染色体适应值
double p[] = new double[10]; // 各染色体选择概率
double q[] = new double[10]; // 累计概率
double F = 0; // 累计适应值总和
for (int i = 0; i < 10; i++) {
evals[i] = calculatefitnessvalue(ipop[i]);
if (best == null) {
best = new Best();
best.fitness = evals[i];
best.generations = 0;
best.str = ipop[i];
} else {
if (evals[i] > best.fitness) // 最好的记录下来
{
best.fitness = evals[i];
best.generations = gernation;
best.str = ipop[i];
}
}
F = F + evals[i]; // 所有染色体适应值总和

}
for (int i = 0; i < 10; i++) {
p[i] = evals[i] / F;
if (i == 0)
q[i] = p[i];
else {
q[i] = q[i - 1] + p[i];
}
}
for (int i = 0; i < 10; i++) {

double r = Math.random();
if (r <= q[0]) {
ipop[i] = ipop[0];

} else {
for (int j = 1; j < 10; j++) {
if (r < q[j]) {
ipop[i] = ipop[j];
break;
}
}
}
}
}

/**
* 交叉操作
* 交叉率为25%,平均为25%的染色体进行交叉
*/
private void cross() {
String temp1, temp2;
for (int i = 0; i < 10; i++) {
if (Math.random() < 0.25) {
double r = Math.random();
int pos = (int) (Math.round(r * 1000)) % GENE;
if (pos == 0) {
pos = 1;
}
temp1 = ipop[i].substring(0, pos)
+ ipop[(i + 1) % 10].substring(pos);
temp2 = ipop[(i + 1) % 10].substring(0, pos)
+ ipop[i].substring(pos);
ipop[i] = temp1;
ipop[(i + 1) / 10] = temp2;
}
}
}

/**
* 基因突变操作
* 1%基因变异m*pop_size 共180个基因,为了使每个基因都有相同机会发生变异,
* 需要产生[1--180]上均匀分布的
*/
private void mutation() {
for (int i = 0; i < 4; i++) {
int num = (int) (Math.random() * GENE * 10 + 1);
int chromosomeNum = (int) (num / GENE) + 1; // 染色体号

int mutationNum = num - (chromosomeNum - 1) * GENE; // 基因号
if (mutationNum == 0)
mutationNum = 1;
chromosomeNum = chromosomeNum - 1;
if (chromosomeNum >= 10)
chromosomeNum = 9;
//System.out.println("变异前" + ipop[chromosomeNum]);
String temp;
if (ipop[chromosomeNum].charAt(mutationNum - 1) == '0') {
if (mutationNum == 1) {
temp = "1" + ipop[chromosomeNum].substring

(mutationNum);
} else {
if (mutationNum != GENE) {
temp = ipop[chromosomeNum].substring(0, mutationNum -

1) + "1" + ipop

[chromosomeNum].substring(mutationNum);
} else {
temp = ipop[chromosomeNum].substring(0, mutationNum -
1) + "1";
}
}
} else {
if (mutationNum == 1) {
temp = "0" + ipop[chromosomeNum].substring

(mutationNum);
} else {
if (mutationNum != GENE) {
temp = ipop[chromosomeNum].substring(0, mutationNum -

1) + "0" + ipop

[chromosomeNum].substring(mutationNum);
} else {
temp = ipop[chromosomeNum].substring(0, mutationNum -
1) + "1";
}
}
}
ipop[chromosomeNum] = temp;
//System.out.println("变异后" + ipop[chromosomeNum]);
}
}
/**
* 执行遗传算法
*/
public String process() {
String str = "";
for (int i = 0; i < 10000; i++) {
this.select();
this.cross();
this.mutation();
gernation = i;
}
str = "最小值" + best.fitness + ",第" + best.generations + "个染色体";
return str;
}

}

Ⅸ 进化算法的基本步骤

进化计算是基于自然选择和自然遗传等生物进化机制的一种搜索算法。与普通的搜索方法一样,进化计算也是一种迭代算法,不同的是进化计算在最优解的搜索过程中,一般是从原问题的一组解出发改进到另一组较好的解,再从这组改进的解出发进一步改进。而且在进化问题中,要求当原问题的优化模型建立后,还必须对原问题的解进行编码。进化计算在搜索过程中利用结构化和随机性的信息,使最满足目标的决策获得最大的生存可能,是一种概率型的算法。
一般来说,进化计算的求解包括以下几个步骤:给定一组初始解;评价当前这组解的性能;从当前这组解中选择一定数量的解作为迭代后的解的基础;再对其进行操作,得到迭代后的解;若这些解满足要求则停止,否则将这些迭代得到的解作为当前解重新操作。
以遗传算法为例,其工作步骤可概括为:
(1) 对工作对象——字符串用二进制的0/1或其它进制字符编码 。
(2) 根据字符串的长度L,随即产生L个字符组成初始个体。
(3) 计算适应度。适应度是衡量个体优劣的标志,通常是所研究问题的目标函数。
(4) 通过复制,将优良个体插入下一代新群体中,体现“优胜劣汰”的原则。
(5) 交换字符,产生新个体。交换点的位置是随机决定的
(6) 对某个字符进行补运算,将字符1变为0,或将0变为1,这是产生新个体的另一种方法,突变字符的位置也是随机决定的。
(7) 遗传算法是一个反复迭代的过程,每次迭代期间,要执行适应度计算、复制、交换、突变等操作,直至满足终止条件。
将其用形式化语言表达,则为:假设α∈I记为个体,I记为个体空间。适应度函数记为Φ:I→R。在第t代,群体P(t)={a1(t),a2(t),…,an(t)}经过复制r(reproction)、交换c(crossover)及突变m(mutation)转换成下一代群体。这里r、c、m均指宏算子,把旧群体变换为新群体。L:I→{True, Flase}记为终止准则。利用上述符号,遗传算法可描述为:
t=0
initialize P(0):={ a1(0),a2(0),…,an(0)};
while(l(P(t))≠True) do
evaluate P(t):{ Φ(a1(t)), Φ(a2(t)),…,Φ(an(t))};
reproction: P′(t):=r(P(t));
crossover: P″(t):=c(P′(t));
mutation: P(t+1):= m(P″(t));
t=t+1;
end

热点内容
手柄怎么调节安卓模式 发布:2025-01-11 21:44:36 浏览:947
国产服务器搭建ftp 发布:2025-01-11 21:27:33 浏览:917
电脑系统哪个好用配置 发布:2025-01-11 21:26:04 浏览:139
交换机配置中web配置是什么意思 发布:2025-01-11 21:12:07 浏览:409
物资数据库 发布:2025-01-11 21:00:24 浏览:854
javastop 发布:2025-01-11 21:00:20 浏览:31
机械手臂用什么编程 发布:2025-01-11 20:55:32 浏览:592
买钓箱要哪些配置就够了 发布:2025-01-11 20:24:23 浏览:510
防脚本取色 发布:2025-01-11 20:15:17 浏览:638
为什么庄周活动安卓没开始 发布:2025-01-11 20:14:23 浏览:462