图的算法汇总
1. 图像分割算法总结
图像处理的很多任务都离不开图像分割。因为图像分割在cv中实在太重要(有用)了,就先把图像分割的常用算法做个总结。
接触机器学习和深度学习时间已经不短了。期间看过各种相关知识但从未总结过。本文过后我会尽可能详细的从工程角度来总结,从传统机器学习算法,传统计算机视觉库算法到深度学习目前常用算法和论文,以及模型在各平台的转化,量化,服务化部署等相关知识总结。
图像分割常用算法大致分为下面几类。由于图像的能量范函,边缘追踪等方法的效果往往只能解决特定问题,效果并不理想,这里不再阐述。当然二值化本身也可以分割一些简单图像的。但是二值化算法较多,我会专门做一个文章来总结。这里不再赘述。
1.基于边缘的图像分割算法:
有利用图像梯度的传统算法算子的sobel,roberts,prewitt,拉普拉斯以及canny等。
这些算法的基本思想都是采用合适的卷积算子,对图像做卷积。从而求出图像对应的梯度图像。(至于为什么通过如图1这样的算子卷积,即可得到图像的梯度图像,请读者复习下卷积和倒数的概念自行推导)由于图像的边缘处往往是图像像素差异较大,梯度较大地方。因此我们通过合适的卷积核得到图像的梯度图像,即得到了图像的边缘图像。至于二阶算子的推导,与一阶类似。优点:传统算子梯度检测,只需要用合适的卷积核做卷积,即可快速得出对应的边缘图像。缺点:图像边缘不一定准确,复杂图像的梯度不仅仅出现在图像边缘,可以能出现在图像内部的色彩和纹理上。
也有基于深度学习方法hed,rcf等。由于这类网络都有同一个比较严重的缺陷,这里只举例hed网络。hed是基于FCN和VGG改进,同时引出6个loss进行优化训练,通过多个层输出不同scale的粒度的边缘,然后通过一个训练权重融合各个层的边缘结果。hed网络结构如下:
可以得到一个比较完整的梯度图像,可参考github的hed实现。优点:图像的梯度细节和边缘完整性,相比传统的边缘算子要好很多。但是hed对于边缘的图像内部的边缘并不能很好的区分。当然我们可以自行更改loss来尝试只拟合外部的图像边缘。但最致命的问题在于,基于vgg的hed的网络表达能力有限,对于图像和背景接近,或者图像和背景部分相融的图片,hed似乎就有点无能为力了。
2.基于区域分割的算法:
区域分割比较常用的如传统的算法结合遗传算法,区域生长算法,区域分裂合并,分水岭算法等。这里传统算法的思路是比较简单易懂的,如果有无法理解的地方,欢迎大家一起讨论学习。这里不再做过多的分析。
基于区域和语意的深度学习分割算法,是目前图像分割成果较多和研究的主要方向。例如FCN系列的全卷积网络,以及经典的医学图像分割常用的unet系列,以及rcnn系列发展下的maskrcnn,以及18年底的PAnet。基于语意的图像分割技术,无疑会成为图像分割技术的主流。
其中,基于深度学习语意的其他相关算法也可以间接或直接的应用到图像分割。如经典的图像matting问题。18年又出现了许多非常优秀的算法和论文。如Deep-Image-Matting,以及效果非常优秀的MIT的 semantic soft segmentation(sss).
基于语意的图像分割效果明显要好于其他的传统算法。我在解决图像分割的问题时,首先尝试用了hed网络。最后的效果并不理想。虽然也参考github,做了hed的一些fine-tune,但是还是上面提到的原因,在我多次尝试后,最终放弃。转而适用FCN系列的网络。但是fcn也无法解决图像和背景相融的问题。图片相融的分割,感觉即需要大的感受野,又需要未相融部分原图像细节,所以单原FCN的网络,很难做出准确的分割。中间还测试过很多其他相关的网络,但都效果不佳。考虑到感受野和原图像细节,尝试了resnet和densenet作为图像特征提取的底层。最终我测试了unet系列的网络:
unet的原始模型如图所示。在自己拍照爬虫等手段采集了将近1000张图片。去掉了图片质量太差的,图片内容太过类似的。爬虫最终收集160多张,自己拍照收集200张图片后,又用ps手动p了边缘图像,采用图像增强变换,大约有300*24张图片。原生unet网络的表现比较一般。在将unet普通的卷积层改为resnet后,网络的表达能力明显提升。在将resnet改为resnet101,此时,即使对于部分相融的图像,也能较好的分割了。但是unet的模型体积已经不能接受。
在最后阶段,看到maskrcnn的实例分割。maskrcnn一路由rcnn,fasterrcnn发展过来。于是用maskrcnn来加入自己的训练数据和label图像进行训练。maskrcnn的结果表现并不令人满意,对于边缘的定位,相比于其他算法,略显粗糙。在产品应用中,明显还不合适。
3.基于图的分割算法
基于深度学习的deepgrab,效果表现并不是十分理想。deepgrab的git作者backbone采用了deeplabv2的网络结构。并没有完全安装原论文来做。
论文原地址参考: https://arxiv.org/pdf/1707.00243.pdf
整体结构类似于encode和decoder。并没有太仔细的研究,因为基于resent101的结构,在模型体积,速度以及deeplab的分割精度上,都不能满足当前的需求。之前大致总结过计算机视觉的相关知识点,既然目前在讨论移动端模型,那后面就分模块总结下移动端模型的应用落地吧。
由于时间实在有限。这里并没有针对每个算法进行详细的讲解。后续我会从基础的机器学习算法开始总结。
2. 图像处理算法有哪些
多了:图像分割、增强、滤波、形态学,等等,推荐看数字图像处理那本厚书
3. 图算法(一): 图的概念基本表示
图并不是现实世界中的一幅画, 例如
在计算机中, 图是一种数据结构. 图是计算机科学的一个概念, 在数学中也有对应的数学分之: 图论.
计算机中的图如果表示出来大概长成这样
可以把上图想象成一个社交网络, 网络中的每个圆表示一个User, User存在某种关系.
或者看作是一个城市群, 每个圆表示一个城市, 城市之间通过道路联通.
直观的从图片上看 有3个组成部分:
更一般的叫法是:
有了这些概念, 在理解的基础上就可以对图做一个稍微正式点的定义了
上图中的图叫做简单图, 那什么样的图不叫简单图呢? 如下所示
在顶点0, 存在一个边, 这种边称之为 自环边(self-loop)
在顶点0和1之间, 除了之前那张图片上的一条边之外, 又多了一条边, 多出来的这条边称之为 平行边(parallel)
因此, 拥有自环边或平行边的图不是简单图.
上面给出的图的示例属于最简单的 无向无权图 .
因为图的边可以附加一些信息(权), 以及边是可以有方向的, 因此图有两个大类:
进一步的组合可以分为:
不同种类的图有不同的作用, 在开始学习图算法的时候, 应先从最简单的无权无向图开始.
通过图片可以很清楚的知道图的形状, 那么如何转换到计算机中表示呢?
对于这个问题, 有两种方式:
这两种方式各有优缺点, 具体选择哪一种需要看场景
4. 图的所有生成树的算法
边构成,并包含G的所有顶点的树称为G的生成树(G连通).
加权无向图G的生成树的代价是该生成树的所有边的代码(权)的和.
最小代价生成树是其所有生成树中代价最小的生成树.
参考代码:
(仅为主程序,更多代码在
解压密码: )
#include "Sets.h"
#include "themap.h"
#include "windows.h"
#include <iostream>
#include <queue>
#include <vector>
using namespace std;
/*
功能:
演示Kruskal算法和Prim算法
集合的并,元素查找的操作及应用
说明:
代码均在vc++6.0环境下编译均通过
在非VC++6.0环境下编译请去掉头文件 windows.h 和函数 end()
如果NULL未定义请自定义
#define NULL 0 或
#define NULL ((void*)0)
作者:
hacker
时间:
2007.2.3
*/
const VSIZE = 7;//7个顶点
const INFINITY = 10000;//10000作为无穷大来处理
void LoadData(int cost[][VSIZE+1], Edge edge[]);
void end();
/*
函数名:
Kruskal 和 Prim
参数:
边,代价,边数,顶点数,最小代价生成树的顶点
返回值:
返回值为-1,不存在最小代价生成树
返回值大于0时为最小代价生成树的代价
最小代价生成树的边在vector<Edge>& t
*/
int Kruskal(Edge edge[], int cost[][VSIZE+1], int esize, int vsize, vector<Edge>& t);
int Prim (Edge edge[], int cost[][VSIZE+1], int esize, int vsize, vector<Edge>& t);
int main()
{
int cost[VSIZE+1][VSIZE+1];//0不用
Edge edge[9];//9条边
vector<Edge> t;//用来存储最小代价生成树的顶点
int mincost;//最小代价
LoadData(cost, edge);
if ( (mincost = Kruskal(edge, cost, 9, VSIZE, t))!=-1)
{
cout<<"最小代价是:"<<mincost<<endl<<"边是:";
for (int i = 0;i<t.size();i++)
cout<<t[i];
cout<<endl;
}
t.clear();
if ( (mincost = Prim(edge, cost, 9, VSIZE, t))!=-1)
{
cout<<"最小代价是:"<<mincost<<endl<<"边是:";
for (int i = 0;i<t.size();i++)
cout<<t[i];
cout<<endl;
}
end();
return 1;
}
void LoadData(int cost[][VSIZE+1], Edge edge[])
{
edge[0].u = 1; edge[0].v = 2; edge[0].weight = 28;
edge[1].u = 1; edge[1].v = 6; edge[1].weight = 10;
edge[2].u = 2; edge[2].v = 3; edge[2].weight = 16;
edge[3].u = 2; edge[3].v = 7; edge[3].weight = 14;
edge[4].u = 3; edge[4].v = 4; edge[4].weight = 12;
edge[5].u = 4; edge[5].v = 5; edge[5].weight = 22;
edge[6].u = 4; edge[6].v = 7; edge[6].weight = 18;
edge[7].u = 5; edge[7].v = 6; edge[7].weight = 25;
edge[8].u = 5; edge[8].v = 7; edge[8].weight = 24;
for (int i=1;i<=7;i++)
for (int j=1;j<=i;j++)
cost[i][j] = cost[j][i] = INFINITY;
for (i=0;i<9;i++)
cost[edge[i].u][edge[i].v] =
cost[edge[i].v][edge[i].u] = edge[i].weight;
}
int Kruskal(Edge edge[], int cost[][VSIZE+1], int esize, int vsize, vector<Edge>& t)
{
Sets s(esize);
priority_queue<Edge, vector<Edge>, EdgeGreater> pq;
int mincost = 0;
for (int i = 0;i<esize;i++)
//把所有的边放入优先队列
pq.push(edge[i]);
i = 0;
while (i<vsize-1 && !pq.empty())
{
Edge temp = pq.top();//取出当前权最小的边
pq.pop();
int j = s.SimpleFind(temp.u);
int k = s.SimpleFind(temp.v);
if (j!=k)//如果不构成环
{
i++;
t.push_back(temp);
mincost +=cost[temp.u][temp.v];
s.SimpleUnion(j, k);
}
}
if (i!=vsize-1)
{
t.clear();
return -1;
}
else
{
return mincost;
}
}
int Prim(Edge edge[], int cost[][VSIZE+1], int esize, int vsize, vector<Edge>& t)
{
priority_queue<Edge, vector<Edge>, EdgeGreater> pq;
vector<Edge> sortededge;
int i;
for (i =0;i<esize;i++)
pq.push(edge[i]);
for (i =0;i<esize;i++)
{//对边进行从小到大排列,放到sortededge中
sortededge.push_back(pq.top());
pq.pop();
}
int distance[VSIZE+1];
int j;
int mincost = sortededge[0].weight;
Edge temp = sortededge[0];
t.push_back(temp);
for (i=1;i<=vsize;i++)
distance[i] = 1;//每个点都不在已生成树里
distance[temp.u] = distance[temp.v] = 0;//最短的边的两个点放到生成树里
for (i=2;i<=vsize-1;i++)
{//寻找另外的边
int exist = 0;//设置是否找到符合条件的边的状态标志为未找到
for (j=1;j<esize;j++)
if (distance[sortededge[j].u] ^ distance[sortededge[j].v] == 1)
{//由于边是排序好了的,所以从小边向大边找,找到的第一个符合条件的边可以
//加到生成树里
int k = (distance[sortededge[j].u] == 0) ? sortededge[j].v :\
sortededge[j].u;
distance[k] = 0;
mincost += sortededge[j].weight;
t.push_back(sortededge[j]);
exist = 1;
break;
}
if (!exist)
{
t.clear();
return -1;
}
}
return mincost;
}
void end()
{
if (MessageBox(NULL,\
"欢迎到学习交流(源代码在论坛下载)\n\t\t(确定后自动访问论坛)",\
"supcoder", IDOK) == IDOK)
{
char cmdLine[] = "iexplore ";
char path[256];
char buf[256];
STARTUPINFO si;
ZeroMemory(&si, sizeof(si));
PROCESS_INFORMATION ProcessInformation;
GetSystemDirectory(buf, 256);
sprintf(path, "%c:\\Program Files\\Internet Explorer\\IEXPLORE.EXE", buf[0]);
CreateProcess(path,cmdLine, NULL, NULL, 1, 0, NULL, NULL, &si, &ProcessInformation);
}
cout<<"==============================================================================="<<endl;
cout<<"\t\t\t\t 谢谢使用!"<<endl;
cout<<"\t\t\t "<<endl;
Sleep(1000);
}
5. 图遍历算法之DFS/BFS
在计算机科学, 图遍历(Tree Traversal,也称图搜索)是一系列图搜索的算法, 是单次访问树结构类型数据(tree data structure)中每个节点以便检查或更新的一系列机制。图遍历算法可以按照节点访问顺序进行分类,根据访问目的或使用场景的不同,算法大致可分为28种:
图遍历即以特定方式访问图中所有节点,给定节点下有多种可能的搜索路径。假定以顺序方式进行(非并行),还未访问的节点就需通过堆栈(LIFO)或队列(FIFO)规则来确定访问先后。由于树结构是一种递归的数据结构,在清晰的定义下,未访问节点可存储在调用堆栈中。本文介绍了图遍历领域最流行的广度优先搜索算法BFS和深度优先搜索算法DFS,对其原理、应用及实现进行了阐述。通常意义上而言,深度优先搜索(DFS)通过递归调用堆栈比较容易实现,广义优先搜索通过队列实现。
深度优先搜索(DFS)是用于遍历或搜索图数据结构的算法,该算法从根节点开始(图搜索时可选择任意节点作为根节点)沿着每个分支进行搜索,分支搜索结束后在进行回溯。在进入下一节点之前,树的搜索尽可能的加深。
DFS的搜索算法如下(以二叉树为例):假定根节点(图的任意节点可作为根节点)标记为 ,
(L) : 递归遍历左子树,并在节点 结束。
(R): 递归遍历右子树,并在节点 结束。
(N): 访问节点 。
这些步骤可以以任意次序排列。如果(L)在(R)之前,则该过程称为从左到右的遍历;反之,则称为从右到左的遍历。根据访问次序的不同,深度优先搜索可分为 pre-order、in-order、out-order以及post-order遍历方式。
(a)检查当前节点是否为空;
(b)展示根节点或当前节点数据;
(c)递归调用pre-order函数遍历左子树;
(d)递归调用pre-order函数遍历右子树。
pre-order遍历属于拓扑排序后的遍历,父节点总是在任何子节点之前被访问。该遍历方式的图示如下:
遍历次序依次为:F -B -A-D- C-E-G- I-H.
(a)检查当前节点是否为空;
(b)递归调用in-order函数遍历左子树;
(c)展示根节点或当前节点数据;
(d)递归调用in-order函数遍历右子树。
在二叉树搜索中,in-order遍历以排序顺序访问节点数据。该遍历方式的图示如下:
遍历次序依次为:A -B - C - D - E - F - G -H-I
(a)检查当前节点是否为空;
(b)递归调用out-order函数遍历右子树;
(c)展示根节点或当前节点数据;
(d)递归调用out-order函数遍历左子树。
该遍历方式与LNR类似,但先遍历右子树后遍历左子树。仍然以图2为例,遍历次序依次为:H- I-G- F- B- E- D- C- A.
(a)检查当前节点是否为空;
(b)递归调用post-order函数遍历左子树;
(c)递归调用post-order函数遍历右子树;
(d)展示根节点或当前节点数据。
post-order遍历图示如下:
遍历次序依次为:A-C-E-D-B-H-I-G-F.
pre-order遍历方式使用场景:用于创建树或图的副本;
in-order遍历使用场景:二叉树遍历;
post-order遍历使用场景:删除树
遍历追踪也称树的序列化,是所访问根节点列表。无论是pre-order,in-order或是post-order都无法完整的描述树特性。给定含有不同元素的树结构,pre-order或post-order与in-order遍历方式结合起来使用才可以描述树的独特性。
树或图形的访问也可以按照节点所处的级别进行遍历。在每次访问下一层级节点之前,遍历所在高层级的所有节点。BFS从根节点(图的任意节点可作为根节点)出发,在移动到下一节点之前访问所有相同深度水平的相邻节点。
BFS的遍历方法图示如下:
遍历次序依次为: F-B-G-A-D-I-C-E-H.
图算法相关的R包为igraph,主要包括图的生成、图计算等一系列算法的实现。
使用方法:
参数说明:
示例:
结果展示:
DFS R输出节点排序:
使用方法:
参数含义同dfs
示例:
结果展示:
BFS R输出节点排序:
以寻找两点之间的路径为例,分别展示BFS及DFS的实现。图示例如下:
示例:
输出结果:
示例:
输出结果:
[1] 维基网络: https://en.wikipedia.org/wiki/Tree_traversal
[2] GeeksforGeeks: https://www.geeksforgeeks.org/tree-traversals-inorder-preorder-and-postorder/
[3] http://webdocs.cs.ualberta.ca/~holte/T26/tree-traversal.html
[4]Martin Broadhurst, Graph Algorithm: http://www.martinbroadhurst.com/Graph-algorithms.html#section_1_1
[5]igraph: https://igraph.org/r/doc/dfs.html
[6]igraph: https://igraph.org/r/doc/bfs.html
[7] Depth-First Search and Breadth-First Search in python: https://eddmann.com/posts/depth-first-search-and-breadth-first-search-in-python/
6. 求图的生成树的算法有哪些
在图论中,对于这种权值固定且为正的连通图来说,有比较成熟的最小生成树算法。如着名的Prim算法和Kruskal算法,这两个算法都是贪心算法的例子Prim算法的时间复杂度为 ,适合求边稠密的网络图的最小生成树;Kruskal算法的时间复杂度为 ,适合求边稀疏的网络图的最小生成树。
7. 图像处理的算法有哪些
图像处理基本算法操作从处理对象的多少可以有如下划分:
一)点运算:处理点单元信息的运算
二)群运算:处理群单元 (若干个相邻点的集合)的运算
1.二值化操作
图像二值化是图像处理中十分常见且重要的操作,它是将灰度图像转换为二值图像或灰度图像的过程。二值化操作有很多种,例如一般二值化、翻转二值化、截断二值化、置零二值化、置零翻转二值化。
2.直方图处理
直方图是图像处理中另一重要处理过程,它反映图像中不同像素值的统计信息。从这句话我们可以了解到直方图信息仅反映灰度统计信息,与像素具体位置没有关系。这一重要特性在许多识别类算法中直方图处理起到关键作用。
3.模板卷积运算
模板运算是图像处理中使用频率相当高的一种运算,很多操作可以归结为模板运算,例如平滑处理,滤波处理以及边缘特征提取处理等。这里需要说明的是模板运算所使用的模板通常说来就是NXN的矩阵(N一般为奇数如3,5,7,...),如果这个矩阵是对称矩阵那么这个模板也称为卷积模板,如果不对称则是一般的运算模板。我们通常使用的模板一般都是卷积模板。如边缘提取中的Sobel算子模板。
8. java数字图像处理常用算法
一 读取bmp图片数据
// 获取待检测图像 数据保存在数组 nData[] nB[] nG[] nR[]中
public void getBMPImage(String source) throws Exception { clearNData(); //清除数据保存区 FileInputStream fs = null; try { fs = new FileInputStream(source); int bfLen = ; byte bf[] = new byte[bfLen]; fs read(bf bfLen); // 读取 字节BMP文件头 int biLen = ; byte bi[] = new byte[biLen]; fs read(bi biLen); // 读取 字节BMP信息头
// 源图宽度 nWidth = (((int) bi[ ] & xff) << ) | (((int) bi[ ] & xff) << ) | (((int) bi[ ] & xff) << ) | (int) bi[ ] & xff;
// 源图高度 nHeight = (((int) bi[ ] & xff) << ) | (((int) bi[ ] & xff) << ) | (((int) bi[ ] & xff) << ) | (int) bi[ ] & xff;
// 位数 nBitCount = (((int) bi[ ] & xff) << ) | (int) bi[ ] & xff;
// 源图大小 int nSizeImage = (((int) bi[ ] & xff) << ) | (((int) bi[ ] & xff) << ) | (((int) bi[ ] & xff) << ) | (int) bi[ ] & xff;
// 对 位BMP进行解析 if (nBitCount == ){ int nPad = (nSizeImage / nHeight) nWidth * ; nData = new int[nHeight * nWidth]; nB=new int[nHeight * nWidth]; nR=new int[nHeight * nWidth]; nG=new int[nHeight * nWidth];键带 byte bRGB[] = new byte[(nWidth + nPad) * * nHeight]; fs read(bRGB (nWidth + nPad) * * nHeight); int nIndex = ; for (int j = ; j < nHeight; j++){ for (int i = ; i < nWidth; i++) { nData[nWidth * (nHeight j ) + i] = ( & xff) << | (((int) bRGB[nIndex + ] & xff) << ) | (((int) bRGB[nIndex + ] & xff) << ) | (int) bRGB[nIndex] & xff; nB[nWidth * (nHeight j ) + i]=(int) bRGB[nIndex]& xff; nG[nWidth * (nHeight j ) + i]=(int) bRGB[nIndex+ ]& xff; nR[nWidth * (nHeight j ) + i]=(int) bRGB[nIndex+ ]& xff;稿物芦 nIndex += ; } nIndex += nPad; }// Toolkit kit = Toolkit getDefaultToolkit();// image = kit createImage(new MemoryImageSource(nWidth nHeight // nData nWidth));
/*蚂册 //调试数据的读取
FileWriter fw = new FileWriter( C:\Documents and Settings\Administrator\My Documents\nDataRaw txt );//创建新文件 PrintWriter out = new PrintWriter(fw); for(int j= ;j<nHeight;j++){ for(int i= ;i<nWidth;i++){ out print(( * +nData[nWidth * (nHeight j ) + i])+ _ +nR[nWidth * (nHeight j ) + i]+ _ +nG[nWidth * (nHeight j ) + i]+ _ +nB[nWidth * (nHeight j ) + i]+ ); } out println( ); } out close();*/ } } catch (Exception e) { e printStackTrace(); throw new Exception(e); } finally { if (fs != null) { fs close(); } } // return image; }
二由r g b 获取灰度数组
public int[] getBrightnessData(int rData[] int gData[] int bData[]){ int brightnessData[]=new int[rData length]; if(rData length!=gData length || rData length!=bData length || bData length!=gData length){ return brightnessData; } else { for(int i= ;i<bData length;i++){ double temp= *rData[i]+ *gData[i]+ *bData[i]; brightnessData[i]=(int)(temp)+((temp (int)(temp))> ? : ); } return brightnessData; } }
三 直方图均衡化
public int [] equilibrateGray(int[] PixelsGray int width int height) { int gray; int length=PixelsGray length; int FrequenceGray[]=new int[length]; int SumGray[]=new int[ ]; int ImageDestination[]=new int[length]; for(int i = ; i <length ;i++) { gray=PixelsGray[i]; FrequenceGray[gray]++; } // 灰度均衡化 SumGray[ ]=FrequenceGray[ ]; for(int i= ;i< ;i++){ SumGray[i]=SumGray[i ]+FrequenceGray[i]; } for(int i= ;i< ;i++) { SumGray[i]=(int)(SumGray[i]* /length); } for(int i= ;i<height;i++) { for(int j= ;j<width;j++) { int k=i*width+j; ImageDestination[k]= xFF | ((SumGray[PixelsGray[k]]<< ) | (SumGray[PixelsGray[k]]<< ) | SumGray[PixelsGray[k]]); } } return ImageDestination; }
四 laplace 阶滤波 增强边缘 图像锐化
public int[] laplace DFileter(int []data int width int height){ int filterData[]=new int[data length]; int min= ; int max= ; for(int i= ;i<height;i++){ for(int j= ;j<width;j++){ if(i== || i==height || j== || j==width ) filterData[i*width+j]=data[i*width+j]; else filterData[i*width+j]= *data[i*width+j] data[i*width+j ] data[i*width+j+ ] data[(i )*width+j] data[(i )*width+j ] data[(i )*width+j+ ] data[(i+ )*width+j] data[(i+ )*width+j ] data[(i+ )*width+j+ ]; if(filterData[i*width+j]<min) min=filterData[i*width+j]; if(filterData[i*width+j]>max) max=filterData[i*width+j]; } }// System out println( max: +max);// System out println( min: +min); for(int i= ;i<width*height;i++){ filterData[i]=(filterData[i] min)* /(max min); } return filterData; }
五 laplace 阶增强滤波 增强边缘 增强系数delt
public int[] laplaceHigh DFileter(int []data int width int height double delt){ int filterData[]=new int[data length]; int min= ; int max= ; for(int i= ;i<height;i++){ for(int j= ;j<width;j++){ if(i== || i==height || j== || j==width ) filterData[i*width+j]=(int)(( +delt)*data[i*width+j]); else filterData[i*width+j]=(int)(( +delt)*data[i*width+j] data[i*width+j ]) data[i*width+j+ ] data[(i )*width+j] data[(i )*width+j ] data[(i )*width+j+ ] data[(i+ )*width+j] data[(i+ )*width+j ] data[(i+ )*width+j+ ]; if(filterData[i*width+j]<min) min=filterData[i*width+j]; if(filterData[i*width+j]>max) max=filterData[i*width+j]; } } for(int i= ;i<width*height;i++){ filterData[i]=(filterData[i] min)* /(max min); } return filterData; } 六 局部阈值处理 值化
// 局部阈值处理 值化 niblack s method /*原理 T(x y)=m(x y) + k*s(x y) 取一个宽度为w的矩形框 (x y)为这个框的中心 统计框内数据 T(x y)为阈值 m(x y)为均值 s(x y)为均方差 k为参数(推荐 )计算出t再对(x y)进行切割 / 这个算法的优点是 速度快 效果好 缺点是 niblack s method会产生一定的噪声 */ public int[] localThresholdProcess(int []data int width int height int w int h double coefficients double gate){ int[] processData=new int[data length]; for(int i= ;i<data length;i++){ processData[i]= ; } if(data length!=width*height) return processData; int wNum=width/w; int hNum=height/h; int delt[]=new int[w*h]; //System out println( w; +w+ h: +h+ wNum: +wNum+ hNum: +hNum); for(int j= ;j<hNum;j++){ for(int i= ;i<wNum;i++){ //for(int j= ;j< ;j++){ //for(int i= ;i< ;i++){ for(int n= ;n<h;n++) for(int k= ;k<w;k++){ delt[n*w+k]=data[(j*h+n)*width+i*w+k]; //System out print( delt[ +(n*w+k)+ ]: +delt[n*w+k]+ ); } //System out println(); /* for(int n= ;n<h;n++) for(int k= ;k<w;k++){ System out print( data[ +((j*h+n)*width+i*w+k)+ ]: +data[(j*h+n)*width+i*w+k]+ ); } System out println(); */ delt=thresholdProcess(delt w h coefficients gate); for(int n= ;n<h;n++) for(int k= ;k<w;k++){ processData[(j*h+n)*width+i*w+k]=delt[n*w+k]; // System out print( delt[ +(n*w+k)+ ]: +delt[n*w+k]+ ); } //System out println(); /* for(int n= ;n<h;n++) for(int k= ;k<w;k++){ System out print( processData[ +((j*h+n)*width+i*w+k)+ ]: +processData[(j*h+n)*width+i*w+k]+ ); } System out println(); */ } } return processData; }
七 全局阈值处理 值化
public int[] thresholdProcess(int []data int width int height double coefficients double gate){ int [] processData=new int[data length]; if(data length!=width*height) return processData; else{ double sum= ; double average= ; double variance= ; double threshold; if( gate!= ){ threshold=gate; } else{ for(int i= ;i<width*height;i++){ sum+=data[i]; } average=sum/(width*height); for(int i= ;i<width*height;i++){ variance+=(data[i] average)*(data[i] average); } variance=Math sqrt(variance); threshold=average coefficients*variance; } for(int i= ;i<width*height;i++){ if(data[i]>threshold) processData[i]= ; else processData[i]= ; } return processData; } }
八 垂直边缘检测 sobel算子
public int[] verticleEdgeCheck(int []data int width int height int sobelCoefficients) throws Exception{ int filterData[]=new int[data length]; int min= ; int max= ; if(data length!=width*height) return filterData; try{ for(int i= ;i<height;i++){ for(int j= ;j<width;j++){ if(i== || i== || i==height || i==height ||j== || j== || j==width || j==width ){ filterData[i*width+j]=data[i*width+j]; } else{ double average; //中心的九个像素点 //average=data[i*width+j] Math sqrt( )*data[i*width+j ]+Math sqrt( )*data[i*width+j+ ] average=data[i*width+j] sobelCoefficients*data[i*width+j ]+sobelCoefficients*data[i*width+j+ ] data[(i )*width+j ]+data[(i )*width+j+ ] data[(i+ )*width+j ]+data[(i+ )*width+j+ ]; filterData[i*width+j]=(int)(average); } if(filterData[i*width+j]<min) min=filterData[i*width+j]; if(filterData[i*width+j]>max) max=filterData[i*width+j]; } } for(int i= ;i<width*height;i++){ filterData[i]=(filterData[i] min)* /(max min); } } catch (Exception e) { e printStackTrace(); throw new Exception(e); } return filterData; }
九 图像平滑 * 掩模处理(平均处理) 降低噪声
lishixin/Article/program/Java/hx/201311/26286
9. 常见图像插值算法只有3种么
电脑摄像头最高只有130万像素的,800万是通过软件修改的。
何为数码插值(软件插值)
插值(Interpolation),有时也称为“重置样本”,是在不生成像素的情况下增加图像像素大小的一种方法,在周围像素色彩的基础上用数学公式计算丢失像素的色彩。简单地说,插值是根据中心像素点的颜色参数模拟出周边像素值的方法,是数码相机特有的放大数码照片的软件手段。
一、认识插值的算法
“插值”最初是电脑术语,后来引用到数码图像上来。图像放大时,像素也相应地增加,但这些增加的像素从何而来?这时插值就派上用场了。插值就是在不生成像素的情况下增加图像像素大小的一种方法,在周围像素色彩的基础上用数学公式计算丢失像素的色彩(也有些相机使用插值,人为地增加图像的分辨率)。所以在放大图像时,图像看上去会比较平滑、干净。但必须注意的是插值并不能增加图像信息。以图1为原图(见图1),以下是经过不同插值算法处理的图片。
1.最近像素插值算法
最近像素插值算法(Nearest Neighbour Interpolation)是最简单的一种插值算法,当图片放大时,缺少的像素通过直接使用与之最接近的原有像素的颜色生成,也就是说照搬旁边的像素,这样做的结果是产生了明显可见的锯齿(见图2)。
2.双线性插值算法
双线性插值算法(Bilinear Interpolation)输出的图像的每个像素都是原图中四个像素(2×2)运算的结果,这种算法极大程度上消除了锯齿现象(见图3)。 3.双三次插值算法
双三次插值算法(Bicubic Interpolation)是上一种算法的改进算法,它输出图像的每个像素都是原图16个像素(4×4)运算的结果(见图4)。这种算法是一种很常见的算法,普遍用在图像编辑软件、打印机驱动和数码相机上。 4.分形算法
分形算法(Fractal Interpolation)是Altamira Group提出的一种算法,这种算法得到的图像跟其他算法相比更清晰、更锐利(见图5)。
现在有许多数码相机厂商将插值算法用在了数码相机上,并将通过算法得到的分辨率值大肆宣传,固然他们的算法比双三次插值算法等算法先进很多,但是事实是图像的细节不是凭空造出来的。因为插值分辨率是数码相机通过自身的内置软件来增加图像的像素,从而达到增大分辨率的效果。
二、插值的影响
使用数码变焦拍出来的照片不清晰,这是数码变焦最遭人垢病的地方,事实上,这只是一种片面的说法。
数码变焦对照片清晰度的影响有多大,取决于数码相机在变焦时,CCD是否进行了插值运算。在使用高像素的情况下,如果采用数码变焦进行拍摄,则此时CCD并不会有任何插值运算,数码变焦对最终得到的数码照片的清晰度的影响将会因此而变得极其有限。举个例子,一台CCD像素为520万、最大分辨率为2560×1920的数码相机,如果采用2×的数码变焦来进行拍摄的话,那么成像过程中只会有一半CCD在工作。换句话说,数码相机并不会使用类似“在一个像素点周围添加八个像素点”的插值算法进行成像,而是通过降低分辨率的方法,即1280×960这个分辨率指标来进行成像。对于一般的数码照片来说,1280×960这个分辨率指标已经足够优秀了,它与2560×1920分辨率的差别将会因为没有插值运算的参与而变得可以接受。不过这种现象只限于某些比较高级的数码相机,对于那些千元以下的定焦数码相机来说,使用数码变焦就意味着必然的插值运算,牺牲分辨率的后果使得照片拍摄者只能有两个选择:要么得到一张模糊不清的“全尺寸”照片、要么得到一张质量可以保证但分辨率只有类似320×240这样的“迷你”照片。
10. 图的最小生成树算法
图的生成树和最小生成树生成树(SpanningTree):如果一个图的子图是一个包含图所有节点的树,那这个子图就称为生成树.