量子遗传算法
㈠ 量子遗传算法的国内外研究现状
当前科学技术正进入多学科互相交叉、互相渗透、互相影响的时代,生命科学与工程科学的交叉、渗透和相互促进是其中一个典型例子,也是近代科学技术发展的一个显着特点。遗传算法的蓬勃发展正体现了科学发展的这一特点和趋势。
制造机器智能一直是人类的梦想,人们为此付出了巨大的努力。人工智能技术的出现,就是人们得到的成果。但是,近年来,随着人工智能应用领域的不断拓广,传统的基于符号处理机制的人工智能方法在知识表示、处理模式信息及解决组合爆炸等方面所碰到的问题已变得越来越突出,这些困难甚至使某些学者对强人工智能提出了强烈批判,对人工智能的可能性提出了质疑。
众所周知,在人工智能领域中,有不少问题需要在复杂而庞大的搜索空间中寻找最优解或准优解。像货朗担问题和规划问题等组合优化问题就是典型的例子。在求解此类问题时,若不能利用问题的固有知识来缩小搜索空间则会产生搜索的组合爆炸。因此,研究能在搜索过程中自动获得和积累有关搜索空间的知识,并能自适应地控制搜索过程,从而得到最优解或准有解的通用搜索算法一直是令人瞩目的课题。遗传算法就是在这种背景下产生并经实践证明特别有效的算法。
遗传算法(Genetic Algorithm, GA)是近年来迅速发展起来的一种全新的随机搜索与优化算法,其基本思想是基于Darw in的进化论和Mendel的遗传学说。该算法由密执安大学教授Holland及其学生于1975年创建。此后,遗传算法的研究引起了国内外学者的关注。自1985年以来.国际上已召开了多次遗传算法的学术会议和研讨会.国际遗传算法学会组织召开的ICGA( International Conference on Genetic Algorithms)会议和FOGA( Workshop on Foundation of Genetic Algorithms)会议。为研究和应用遗传算法提供了国际交流的机会。
作为一种通用的问题求解方法,遗传算法采用简单的编码技术来表示各种复杂的结构并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向。
近年来,遗传算法已被成功地应用于下业、经济答理、交通运输、工业设计等不同领域.解决了许多问题。例如,可靠性优化、流水车间调度、作业车间调度、机器调度、设备布局设计、图像处理以及数据挖掘等。本文将从遗传算法的理论和技术两方而概述目前的研究现状。描述遗传算法的主要特点、基木原理以及各种改进算法,介绍遗传算法的程序设计。
遗传程序设计是借鉴生物界的自然选择和遗传机制,在遗传算法的基础上发展起来的搜索算法,它己成为进化计算的一个新分支。在标准的遗传算法中,由定长字符串(问题的可行解)组成的群体借助于复制、交叉、变异等遗传操作不断进化找到问题的最优解或次优解。遗传程序设计运用遗传算法的思想,常采用树的结构来表示计算机程序,从而解决问题。对于许多问题,包括人工智能和机器学习上的问题都可看作是需要发现一个计算机程序,即对特定输入产生特定输出的程序,形式化为程序归纳,那么遗传程序设计提供了实现程序归纳的方法。
把遗传算法和计算机程序结合起来的思想出现在遗传算法中,Holland把产生式语言和遗传算法结合起来实现分类系统,还有一些遗传算法应用领域的研究者将类似于遗传算法的遗传操作施加于树结构的程序上。
近年来,遗传程序设计运用遗传算法的思想自动生成计算机程序解决了许多问题,如预测、分类、符号回归和图像处理等,作为一种新技术它己经与遗传算法并驾齐驱。 1996年,举行了第1次遗传程序设计国际会议,该领域己引起越来越多的相关学者们的兴趣。
1967年,Holland的学生J.D.Bagley在博士论文中首次提出“遗传算法(Genetic Algorithms)”一词。此后,Holland指导学生完成了多篇有关遗传算法研究的论文。1971年,R.B.Hollstien在他的博士论文中首次把遗传算法用于函数优化。1975年是遗传算法研究历史上十分重要的一年。这一年Holland出版了他的着名专着《自然系统和人工系统的自适应》(Adaptation in Natural and Artificial Systems),这是第一本系统论述遗传算法的专着,因此有人把1975年作为遗传算法的诞生年。Holland在该书中系统地阐述了遗传算法的基本理论和方法,并提出了对遗传算法的理论研究和发展极其重要的模式理论(schema theory)。该理论首次确认了结构重组遗传操作对于获得隐并行性的重要性。同年,K.A.De Jong完成了他的博士论文《一类遗传自适应系统的行为分析》(An Analysis of the Behavior of a Class of Genetic Adaptive System)。该论文所做的研究工作,可看作是遗传算法发展进程中的一个里程碑,这是因为,他把Holland的模式理论与他的计算实验结合起来。尽管De Jong和Hollstien 一样主要侧重于函数优化的应用研究,但他将选择、交叉和变异操作进一步完善和系统化,同时又提出了诸如代沟(generation gap)等新的遗传操作技术。可以认为,De Jong的研究工作为遗传算法及其应用打下了坚实的基础,他所得出的许多结论,迄今仍具有普遍的指导意义。
进入八十年代,遗传算法迎来了兴盛发展时期,无论是理论研究还是应用研究都成了十分热门的课题。1985年,在美国召开了第一届遗传算法国际会议(International Conference on Genetic Algorithms ,ICGA),并且成立国际遗传算法学会(International Society of Genetic Algorithms ,ISGA),以后每两年举行一次。
1989年,Holland的学生D.E.Goldberg出版了专着《搜索、优化和机器学习中的遗传算法》(Genetic Algorithms in Search , Optimization, and Machine Learning)。该书总结了遗传算法研究的主要成果,对遗传算法及其应用作了全面而系统的论述。同年,美国斯坦福大学的Koza基于自然选择原则创造性地提出了用层次化的计算机程序来表达问题的遗传程序设计( genetic programming, GP)方法,成功地解决了许多问题。
在欧洲,从1990年开始每隔一年举办一次Parallel Problem Solving from Nature 学术会议,其中遗传算法是会议主要内容之一。此外,以遗传算法的理论基础为中心的学术会议还有Foundations of Genetic Algorithms,该会也是从1990年开始隔年召开一次。这些国际会议论文,集中反映了遗传算法近些年来的最新发展和动向。
1991年,L.Davis编辑出版了《遗传算法手册》(Handbook of Genetic Algorithms),其中包括了遗传算法在工程技术和社会生活中的大量应用实例。
1992年,Koza发表了他的专着《遗传程序设计:基于自然选择法则的计算机程序设计》”。1994年,他又出版了《遗传程序设计,第二册:可重用程序的自动发现》深化了遗传程序设计的研究,使程序设计自动化展现了新局面。有关遗传算法的学术论文也不断在《Artificial Intelligence》、《Machine Learning》、《Information science》、《Parallel Computing》、《Genetic Programming and Evoluable Machines》\《IEEE Transactions on Neural Networks》,《IEEE Transactions on Signal Processing》等杂志上发表。1993年,MIT出版社创刊了新杂志《Evolutionary Computation》。1997年,IEEE又创刊了《Transactions on Evolutionary Computation》。《Advanced Computational Intelligence》杂志即将发刊,由模糊集合创始人L.A.Zadeh教授为名誉主编。目前,关于遗传算法研究的热潮仍在持续,越来越多的从事不同领域的研究人员已经或正在置身于有关遗传算法的研究或应用之中。
㈡ 量子遗传算法与遗传算法有什么区别
遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理粗培的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(indivial)组成。每个个体实际上是染色体(chromosome)带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。因此,在一开始需要实现从表现型到基因型的映射即编码工作。由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。这个过程将导致种群迟碧像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。
量子遗传算法是量子计算与遗传算法相结合的产物。目前,这一领域的研究主要集中在两类模型上:一类是基于量子多宇宙特征的多宇宙量子衍生遗传算法(Quantum Inspired Genetic Algorithm),另一类是基于量子比特和量子态登加特性的遗传量子算法(Genetic Quantum Algorithm,GQA)。
量 子遗传算法(Quantum GeneticA lgorithm,QGA)。QGA采用多状态基因量子比特编码方式和通用的量子旋转门操作。引入动态调整旋转角机制和量子交叉,比文献[2]的方法更具有通用性,且效率更高。但该方法仍是一个群体独自演化没有利用盈子信息的多宇宙和宇宙间的纠缠特性效率有待进一步提高。文献[3]提出一种多宇宙并行量子遗传算法(Multiuniverse Parallel Quantum Genetic Algorithm,MPQGA),算法中将所有的个体按照一定的拓扑结构分成一个个独立的子群体,称为宇宙;采用多状态基因量子比特编码方式来表达宇宙中的个体;采用通用的量子旋转门策略和动态调整旋转角机制对个码凳举体进行演化;各宇宙独立演化,这样可扩大搜索空间,宇宙之间采用最佳移民、量子交叉和量子变异操作来交换信息使算法的适应性更强,效率更高。
㈢ 量子遗传算法的优势在哪
优势都是理论上说比较好 实际上都差不多的 没有什么好算法 真的那么好的话 就没有必要研究别的算法了
㈣ Narayanan等人于1996年首次将量子理论与进化算法相结合,提出了()的概念。
Narayanan等人于1996年首次将量子理论与进化算法相结合,提出了(姿租亮)的概念。
A.遗传算法
B.粒子群算法
C.量子遗传算法
D.蚁群算法
正确答案:量子遗迹宽传型梁算法
㈤ 利用遗传算法求解TSP问题 从北京出发 四个城市
作为一种模拟生物自然遗传与进化过程的优化方法,遗传算法(GA)因其具有隐并行性、不需目标函数可微等特点,常被用于解决一些传统优化方法难以解决的问题。旅行商问题(TSP)是典型的NP难题组合优化问题之一,且被广泛应用于许多领域,所以研究遗传算法求解TSP具有重要的理论意义和应用价值。具有量子计算诸多特点的量子遗传算法(OGA)作为—新的概率进化算法,在解决实际问题时,其高度并行性能极大地提高计算效率,因而研究OGA求解TSP同样有重要的价值;而将具有遍历性和随机性的“混沌”概念引入量子遗传算法求解较复杂的组合优化问题又为求解优化问题开拓了一个新的思路。
㈥ 量子遗传算法的量子遗传算法发展简介
前者的贡献在于将量子多宇宙的概念引入遗传算法,利用多个宇宙的并行搜索,增大搜索范围,利用宇宙之间的联合交叉,实现信息的交流,从而整体上提高了算法的搜索效率。但算法中的多宇宙是通过分别产生多个种群获得的,并没有利用量子态,因而仍属于常规遗传算法。后者将量子的态矢量表达引入遗传编码,利用量子旋转门实现染色体的演化,实现了比常规遗传算法更好的效果。但该算法主要用来解决0-1背包问题。编码方案和量子旋转门的演化策略不具有通用性,尤其是由于所有个体都朝一个目标演化,如果没有交叉操作,极有可能陷入局部最优。
文献[1]对QGA进行了改进,提出量子遗传算法(Quantum GeneticA lgorithm,QGA)。QGA采用多状态基因量子比特编码方式和通用的量子旋转门操作。引入动态调整旋转角机制和量子交叉,比文献[2]的方法更具有通用性,且效率更高。但该方法仍是一个群体独自演化没有利用盈子信息的多宇宙和宇宙间的纠缠特性效率有待进一步提高。文献[3]提出一种多宇宙并行量子遗传算法(Multiuniverse Parallel Quantum Genetic Algorithm,MPQGA),算法中将所有的个体按照一定的拓扑结构分成一个个独立的子群体,称为宇宙;采用多状态基因量子比特编码方式来表达宇宙中的个体;采用通用的量子旋转门策略和动态调整旋转角机制对个体进行演化;各宇宙独立演化,这样可扩大搜索空间,宇宙之间采用最佳移民、量子交叉和量子变异操作来交换信息使算法的适应性更强,效率更高。
㈦ 量子优化求解车辆路径
量子优化求解车辆路径:
1、量子遗传算法被大量应用于解决车辆路径和调度问题。蔡蓓蓓等在传统qga随机全局搜索中引入免庆渗亏疫算子实现线路次序的再优化。王宇平等则在量子编码、杂交提出qga的改进,并着重提出两阶段局部搜索来加速进化收敛。量子遗传算法的应用中,收敛速度和防止陷入局部最优解是两个值得重点研究的问题。
2、量子遗传算法计算时的信息单位由量子位表示,一个量子位可表示为:其中,α和誉神β是喊樱复数,代表相应状态出现的概率,|α|2和|β|2分别表示量子比特处于状态0和1的概率,满足|α|2+|β|2=1。
㈧ 量子遗传算法对于遗传算法的优点是什么
搜索范围更广,适应性更强,效率更高,效果更好。
㈨ 变异操作是维持全体多样性的关键正确吗
正确。首先用最简单的例子来介绍遗传算法
例:用遗传算法求y = x在[-1, 1]上的最小值。
步骤一:选择二进制编码,及将[-1, 1]上的数向[0000000000 1111111111]映射,例将-1映射为0000000000, 1映射为1111111111。
步骤二:初始化种群。随意生成50个10位二进制数作为初始种群。
步骤三:适应度计算。由于我们要求最小值,所以我们将适应度函数设租迹扰为弊旦F = 1 / y。,然后计算初始种群的个体适应度。
步骤四:选择操作。常见的选择算子有轮盘赌法,即基于适应度比例的选择策略,个体i被选中的概率为
步骤五:交叉操作。交叉操作是指从种群中随机选择两个个体,通过两个个体的交换组合得到新的个体,例两个个体为1010101010和0101010101,交换其后两位得到1010101001和0101010110。
步骤六:变异操作。变异操作主要目的是维持种群多样性。例:将 1010101010变异成1010101011。
重复步骤三到六,迭代500次,最后种群中的适应度最高的个体即为得到的最优解。
遗传算法的不足
全局搜索能力极强而局部寻优能力较差。研究发现,遗传算法可以用几极快的速度达到最优解的90%左右,但要达到真正的最优解则需要花费很长的时间。
易出现早熟收敛现象。当种群规模较小,如果在进化初期出现适应度较高的个体,由于个别优势个体繁殖过快,往往会破坏群体的多样性,从而出现早熟收敛现象。
遗传算法的改进
为改善遗传算法的局部搜索能力,在变异操作后加上进化逆转操作。例随机变换一个个体中的两个部分交换,如果这种操州告作使得适应度增强,则保留,否则不变。
使用精英策略,子代种群中的最优个体永远不会比父代的个体差。父代中的精英会原封不动地直接传给子代,而不经过交叉或变异操作。
多种群遗传算法,多个种群同时进化,然后加入移民算子,将个体在种群之间交换。
量子遗传算法,每一个二进制位有两个纠缠的量子表示,只有当测量的时候才知道其真实值。然后用量子旋转操作代替选择、交叉和变异操作。
作者:小鹏不会飞
链接:https://juejin.cn/post/6861568236341723149
来源:稀土掘金
着作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
㈩ 你好,遗传算法在网络编码中可以应用吗,还有就是遗传算法和量子遗传算法的本质区别是啥啊求回答啊
遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。
量子遗传算法是量子计算与遗传算法相结合的产物。
量子遗传算法对于遗传算法的优点,搜索范围更广,适应性更强,效率更高,效果更好。