图像匹配算法
1. 特征图像匹配用什么算法好
SIFT SURF等
2. 图像匹配的匹配关键要素
同一场景在不同条件下投影所得到的二维图像会有很大的差异,这主要是由如下原因引起的:传感器噪声、成像过程中视角改变引起的图像变化、目标移动和变形、光照或者环境的改变带来的图像变化以及多种传感器的使用等。为解决上述图像畸变带来的匹配困难,人们提出了许多匹配算法,而它们都是由如下四个要素组合而成:
(1)特征空间
特征空间是由参与匹配的图像特征构成的,选择好的特征可以提高匹配性能、降低搜索空间、减小噪声等不确定性因素对匹配算法的影响。匹配过程可以使用全局特征或者局部特征以及两者的结合。
(2)相似性度量
相似性度量指用什么度量来确定待匹配特征之间的相似性,它通常定义为某种代价函数或者是距离函数的形式。经典的相似性度量包括相关函数和 Minkowski 距离,近年来人们提出了 Hausdorff 距离、互信息作为匹配度量。Hausdorff 距离对于噪声非常敏感,分数 Hausdorff 距离能处理当目标存在遮挡和出格点的情况,但计算费时;基于互信息的方法因其对于照明的改变不敏感已在医学等图像的匹配中得到了广泛应用,它也存在计算量大的问题,而且要求图像之间有较大的重叠区域。
(3)图像匹配变换类型
图像几何变换用来解决两幅图像之间的几何位置差别,它包括刚体变换、仿射变换、投影变换、多项式变换等。
(4)变换参数的搜索
搜索策略是用合适的搜索方法在搜索空间中找出平移、旋转等变换参数的最优估计,使得图像之间经过变换后的相似性最大。搜索策略有穷尽搜索、分层搜索、模拟退火算法、Powell方向加速法、动态规划法、遗传算法和神经网络等。遗传算法采用非遍历寻优搜索策略,可以保证寻优搜索的结果具有全局最优性,所需的计算量较之遍历式搜索小得很多;神经网络具有分布式存储和并行处理方式、自组织和自学习的功能以及很强的容错性和鲁棒性,因此这两种方法在图像匹配中得到了更为广泛的使用。
在成像过程中,由于噪声及遮挡等原因,导致一幅图像中的特征基元在另一幅图像中有几个候选特征基元或者无对应基元,这些都是初级视觉中的“不适定问题”,通常在正则化框架下用各种约束条件来解决。常用的约束有唯一性约束、连续性约束、相容性约束和顺序一致性约束。首先提取左右图像对中的线段,用对应线段满足的全局约束、相容性约束、邻域约束等表示 HopfieIk 神经网络的能量函数,通过最小化能量函数得到两幅图像中的对应线段,提高了匹配的可靠性。同时人们还采用最小平方中值法和投票算法等后处理来有效地消除假配点和误配点。
3. 图象匹配比值算法
自相关比值模板匹配算法
4. 基于特征的影像匹配算法有哪些
基于局部约束的方法:有区域匹配(主要是基于窗口)、特征匹配(基于特征点,如SIFT)、相位匹配(主要用滤波来做)。
基于全局约束的方法:主要有动态规划算法、图割算法、人工智能算法、协同算法、置信度传播算法、非线性扩散算法等。
那个发展史就找两本摄影测量的书或下几篇论文看看就知道了
5. 图像匹配的概述
图像匹配是指通过一定的匹配算法在两幅或多幅图像之间识别同名点,如二维图像匹配中通过比较目标区和搜索区中相同大小的窗口的相关系数,取搜索区中相关系数最大所对应的窗口中心点作为同名点。其实质是在基元相似性的条件下,运用匹配准则的最佳搜索问题。
6. 跪求:基于SIFT的图像匹配算法研究MATLAB程序
请问楼主问什么这个代码里运行那个例子的时候总出现Undefined function or method 'detect_features' for input arguments of type 'uint8'.Error in ==> script_example at 12[features1,pyr1,imp1,keys1] = detect_features(img1);是我运行错了吗?应该怎么做?
7. 图像匹配 算法 急啊!!!!!!!!!!!!
如果你能做出来的话,那你就发财了,别作为毕业设计作品交给老师,而是拿着这个东西可以开家大公司了。
8. opencv关于像素点的图像匹配算法
首先,建议你将图像中感兴趣区域(比如上图中的字母)取出来进行归一化,然后在进行匹配率计算。这是因为周围环境会对匹配率产生影响。
其次,建议你将匹配率算法改成Hausdorff距离https://en.wikipedia.org/wiki/Hausdorff,这样对图像有些平移什么的都不怎么敏感了。
9. 图像匹配 matlab 图像匹配方法 的程序
http://www.ilovematlab.cn/forum.php?mod=viewthread&tid=164045 下载区把
SURF实现图像匹配的matlab代码(比SIFT速度快)关于SURF我就不介绍了,网上很多资料,跟大名鼎鼎的SIFT有的一拼。需要代码的来下哈,绝对好用,代码自带图片,运行就可以显示结果。Image Matching.不说了,直接上代码。:lol
10. 如何比较SIFT,SURF,Harris-SIFT图像匹配算法性能
SIFT匹配(Scale-invariant feature transform,尺度不变特征转换)是一种电脑视觉的算法用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置、尺度、旋转不变量,此算法由 David Lowe 在1999年所发表,2004年完善总结。其应用范围包含物体辨识、机器人地图感知与导航、影像缝合、3D模型建立、手势辨识、影像追踪和动作比对。
局部影像特征的描述与侦测可以帮助辨识物体,SIFT 特征是基于物体上的一些局部外观的兴趣点而与影像的大小和旋转无关。对于光线、噪声、些微视角改变的容忍度也相当高。基于这些特性,它们是高度显着而且相对容易撷取,在母数庞大的特征数据库中,很容易辨识物体而且鲜有误认。使用 SIFT特征描述对于部分物体遮蔽的侦测率也相当高,甚至只需要3个以上的SIFT物体特征就足以计算出位置与方位。在现今的电脑硬件速度下和小型的特征数据库条件下,辨识速度可接近即时运算。SIFT特征的信息量大,适合在海量数据库中快速准确匹配。
2、SIFT特征的主要特点
从理论上说,SIFT是一种相似不变量,即对图像尺度变化和旋转是不变量。然而,由于构造SIFT特征时,在很多细节上进行了特殊处理,使得SIFT对图像的复杂变形和光照变化具有了较强的适应性,同时运算速度比较快,定位精度比较高。如:
在多尺度空间采用DOG算子检测关键点,相比传统的基于LOG算子的检测方法,运算速度大大加快;
关键点的精确定位不仅提高了精度,而且大大提高了关键点的稳定性;
在构造描述子时,以子区域的统计特性,而不是以单个像素作为研究对象,提高了对图像局部变形的适应能力;