当前位置:首页 » 操作系统 » 证书指纹算法

证书指纹算法

发布时间: 2023-05-23 18:34:51

Ⅰ TLS/SSL数字证书里的指纹算法、签名算法和签名哈希算法各是做什么用的

您好!

作用与目的相同都是为了进行加密,更好的保护平台,SSL安全哈希算法,是数字签名算法标准,所以无论您在哪里注册无论多少价格的证书,其算法基本上都是相同的!

申请SSL证书为考虑到浏览器兼容性,保持更多的浏览器可以访问,通常采取加密算法:RSA 2048 bits,签名算法:SHA256WithRSA,该算法被公认使用,就是网络也使用该算法!

RSA加密算法:公钥用于对数据进行加密,私钥用于对数据进行解密。

RSA签名算法:在签名算法中,私钥用于对数据进行签名,公钥用于对签名进行验证。

加密算法分为两大类:1、对称加密算法 2、非对称加密算法。

由于计算能力的飞速发展,从安全性角度考虑,很多加密原来SHA1WithRSA签名算法的基础上,新增了支持SHA256WithRSA的签名算法。该算法在摘要算法上比SHA1WithRSA有更强的安全能力。目前SHA1WithRSA的签名算法会继续提供支持,但为了您的应用安全,强烈建议使用SHA256WithRSA的签名算法。

java代码怎么获取数字的证书那一串20位指纹

通过JAVA来读取数字证书的方法获取20位指纹:
CARead.java文件代码:
public class CARead extends JPanel {
private String CA_Name;
private String CA_ItemData[][] = new String[9][2];
private String[] columnNames = { "证书字段标记", "内容" };
public CARead(String CertName) {
CA_Name = CertName;
/* 三个Panel用来显示证书内容 */
JTabbedPane tabbedPane = new JTabbedPane();
JPanel panelNormal = new JPanel();
tabbedPane.addTab("普通信息", panelNormal);
JPanel panelAll = new JPanel();
panelAll.setLayout(new BorderLayout());
tabbedPane.addTab("所有信息", panelAll);
JPanel panelBase64 = new JPanel();
panelBase64.setLayout(new BorderLayout());
tabbedPane.addTab("Base64编码形式的信息", panelBase64);
/野姿* 读取证书常规信息 */
Read_Normal(panelNormal);
/* 读取证书文件字符串表示内容 */
Read_Bin(panelAll);
/* 以Base64编码颂庆绝形式读取证书文件的信息 */
Read_Raw(panelBase64);
tabbedPane.setSelectedIndex(0);
setLayout(new GridLayout(1, 1));
add(tabbedPane);
}
private int Read_Normal(JPanel panel) {
String Field;
try {
CertificateFactory certificate_factory = CertificateFactory
.getInstance("X.509");
FileInputStream file_inputstream = new FileInputStream(CA_Name);
X509Certificate x509certificate = (X509Certificate) certificate_factory
.generateCertificate(file_inputstream);
Field = x509certificate.getType();
CA_ItemData[0][0] = "类型";
CA_ItemData[0][1] = Field;
Field = Integer.toString(x509certificate.getVersion());
CA_ItemData[1][0] = "版本";
CA_ItemData[1][1] = Field;
Field = x509certificate.getSubjectDN().getName();
CA_ItemData[2][0] = "标题";
CA_ItemData[2][1] = Field;
Field=x509certificate.getNotBefore().toString();//得到开始有效日期
CA_ItemData[3][0] = "开始有效日期";
CA_ItemData[3][1] = Field;
Field=x509certificate. getNotAfter().toString();//得到截止日期
CA_ItemData[4][0] = "截差槐止日期";
CA_ItemData[4][1] = Field;
Field=x509certificate.getSerialNumber().toString(16);//得到序列号
CA_ItemData[5][0] = "序列号";
CA_ItemData[5][1] = Field;
Field=x509certificate.getIssuerDN().getName();//得到发行者名
CA_ItemData[6][0] = "发行者名";
CA_ItemData[6][1] = Field;
Field=x509certificate.getSigAlgName();//得到签名算法
CA_ItemData[7][0] = "签名算法";
CA_ItemData[7][1] = Field;
Field=x509certificate.getPublicKey().getAlgorithm();//得到公钥算法
CA_ItemData[8][0] = "公钥算法";
CA_ItemData[8][1] = Field;
//关闭输入流对象
file_inputstream.close();
final JTable table = new JTable(CA_ItemData, columnNames);
TableColumn tc = null; //表格列控制
tc = table.getColumnModel().getColumn(1);//得到表头
tc.setPreferredWidth(600);//设置宽度
panel.add(table);//增加到布局面板
} catch (Exception exception) {
exception.printStackTrace(); //异常捕获、
return -1;
}
return 0;
}
//读取二进制指纹文件
private int Read_Bin(JPanel panel) {
try {
FileInputStream file_inputstream = new FileInputStream(CA_Name);
DataInputStream data_inputstream = new DataInputStream(
file_inputstream);
CertificateFactory certificatefactory = CertificateFactory
.getInstance("X.509");
byte[] bytes = new byte[data_inputstream.available()];
data_inputstream.readFully(bytes);
ByteArrayInputStream s = new ByteArrayInputStream(bytes);
JEditorPane Cert_EditorPane;
Cert_EditorPane = new JEditorPane();
X509Certificate cert=null;
//遍历得到所有的证书属性
if (s.available() > 0)
{
cert = (X509Certificate) certificatefactory .generateCertificate(s);
Cert_EditorPane.setText(cert.toString());
}
Cert_EditorPane.disable();
JScrollPane edit_scroll = new JScrollPane(Cert_EditorPane);
panel.add(edit_scroll);
file_inputstream.close();
data_inputstream.close();
} catch (Exception exception) {
exception.printStackTrace();
return -1;
}
return 0;
}
private int Read_Raw(JPanel panel) {
try {
JEditorPane Cert_EditorPane = new JEditorPane();
StringBuffer strBuffer =new StringBuffer();
File inputFile = new File(CA_Name);
FileReader in = new FileReader(inputFile);
char[] buf = new char[2000];
int len = in.read(buf, 0, 2000);
for (int i = 1; i < len; i++) {
strBuffer.append(buf[i]);
}
in.close();
Cert_EditorPane.setText(strBuffer.toString());
Cert_EditorPane.disable();
JScrollPane edit_scroll = new JScrollPane(Cert_EditorPane);
panel.add(edit_scroll);
} catch (Exception exception) {
exception.printStackTrace();
return -1;
}
return 0;
}
}

Ⅲ 一文弄懂关于证书,签名,ssl,android包签名机制。

所有的概念都基于一个非常重要的基础:

rsa 非对称加密算法

先感受下几个概念

PKI。

PKI是公钥基础设施(Public Key Infrastructure) 包括PKI策略、软硬件系统、证书机构CA、注册机构RA、证书发布系统和PKI应用等。

我们关注就俩东西: PKCS 证书机构CA 。前者是定义加密算法,签名,证书相关的各种事情采用的协议。后者可以为我们颁发权威的证书。

PKCS
PKCS(The Public-Key Cryptography Standards )是由美国RSA数据安全公司及其合作伙伴制定的一组公钥密码学标准,其中包括证书申请、证书更新、证书作废表发布、扩展证书内容以及数字签名、数字信封的格式等方面的一系列相关协议。RSA算法可以做加密、解密、签名、验证,还有RSA的密钥对存储。这些都需要标准来规范,如何输入,如何输出,如何存储等。

PKCS。全称是公钥密码学标准, 目前共发布过 15 个标准,这些标准都是协议。总结一下 就是对加密算法,签名,证书协议的描述。下面列举一些常用的协议,这些协议在本文都会对应上。

这些协议具体的实现就体现在openssl等工具中, 以及jdk工具keytool jdk java第三方库bouncycastle。

比如用openssl 如何生成公/私钥(PKCS#1)、签名(PKCS#1 )、签名请求文件(KCS#10)、 带口令的私钥(PKCS#8)。 含私钥的证书(PKCS#12)、证书库(PKCS#12)

其中涉及到算法的基础协议PKCS#1等,由于涉及到密码学原理所以我们并不需要深究它,只要知道怎么做就可以了。

现实中我们要解决这样一种情况:

客户端和服务器之间的数据要进行加密。需要两个达成同一个对称秘钥加密才行,那么这个秘钥如何生成,并在两边都能拿到,并保证传输过程中不被泄露。 这就用到非对称加密了。 后续的传输,就能用这个 对称秘钥来加密和解密了。

还有这样一个问题:

就是客户端如何判断服务端是否是合法的服务端。这就需要服务端有个id来证明它,而这个id 就是证书,而且必须是权威机构颁发的才能算是合法的。
因为客户端即浏览器,认定证书合法的规则必须通过第三方来确认 即ca颁发的证书。否则就我可能进了一个假网站。

而这两个问题 都是ssl协议要解决的内容。

所以ssl协议做了两件事情,一是验证身份,二是协商对称秘钥,并安全的传输。 而实现这个过程的关键数据模型就是证书, 通过证书中的ca对证书的签名,实现了身份验证,通过证书中的公钥,实现对对称秘钥加密,从而实现数据保密。 其实还顺手做了一件事情就是通过解密签名比对hash,保证了数据完整性。

明白ssl协议 首先明白几个重要的概念:

证书: 顾名思义就是提供了一种在Internet上验证通信实体身份的方式,数字证书不是数字身份证,由权威公正的第三方机构,即CA(例如中国各地方的CA公司)中心签发的证书, 就是可以认定是合法身份的。客户端不需要证书。 证书是用来验证服务端的。

一般的证书都是x509格式证书,这是一种标准的证书,可以和其他证书类型互相转换。完整来说证书包含,证书的内容,包括 版本号, 证书序列号, hash算法, 发行者名称,有效期, 公钥算法,公钥,签名(证书原文以及原文hash一起签名)而这个内容以及格式 都是标准化的,即x509格式 是一种标准的格式。

签名: 就用私钥对一段数据进行加密,得到的密文。 这一段数据在证书的应用上就是 对证书原文+原文hash进行签名。
谁签的名,就是用谁的私钥进行加密。就像身份证一样, 合法的身份证我们都依据是政府签的,才不是假证, 那就是浏览器会有政府的公钥,通过校验(解密)签名,如果能够解密,就可以确定这个就是政府的签名。就对了。

hash算法 :对原始数据进行某种形式的信息提取,被提取出的信息就被称作原始数据的消息摘要。比如,MD5和SHA-1及其大量的变体。 hash算法具有不可逆性,无法从摘要中恢复出任何的原始消息。长度总是固定的。MD5算法摘要的消息有128个比特位,SHA-1算法摘要的消息最终有160比特位的输出。

ca机构: 权威证书颁发机构,浏览器存有ca的公钥,浏览器以此公钥来验证服务端证书的合法性。

证书的获取: 生成证书申请文件.csr(涉及到PKCS#10定义的规范)后向ca机构申请。 或者自己直接通过生成私钥就可以一步到位生成自签名证书。 自签名证书就是用自己的私钥来签名证书。

那么为了体现到 证书身份认证、数据完整、保密性三大特性 ,证书的简化模型可以认为包含以下两个要素:服务器公钥,ca的签名(被ca私钥加密过的证书原文+原文hash),

身份认证:
浏览器存有ca公钥,用ca公钥解密网站发给你的证书中的签名。如果能解密,说明该证书由ca颁发,证书合法。 否则浏览器就会报警告,问你是否信任这个证书,也就是这个网站。这时候的证书可以是任何人签发的,可以自己签发的。 但是中间人攻击。 完全伪造新的证书, 这就没有办法了。 所以还是信任证书的时候要谨慎。

数据完整:
如果你信任该证书的话,这时候就会用证书中的公钥去解密签名,如果是ca签发的证书,那么之前就已经通过ca的公钥去解密签名了。 然后得到证书hash,然后在浏览器重新对证书做hash,两者比对一致的话,说明证书数据没有被篡改。

保密性:
使用证书的公钥对对称秘钥加密保证传输安全,对称秘钥生成后,后续的传输会通过对称秘钥来在服务端和客户端的加解密。

那么ssl协议的具体过程就是:

4.网站接收浏览器发来的数据之后 使用自己的私钥校验签名,并对原文进行hash 与解密出的hash 做比对检查完整性。然后发送编码改变通知,服务器握手结束通知(所有内容做hash )。 发送给客户端校验。

5 客户端校验,校验成功后,之后就用 对称秘钥进行通信了。

总共的过程是 c-s-c- s-c 四次握手。

四次握手简单来说分别是:
1.请求获取证书
2.服务端返回证书,客户端验证了证书的合法性和完整性,同时生成了对称秘钥。
3.客户端把加密的 对称秘钥发给服务器。服务器检查真实性和完整性。
4.服务端返回握手结束通知,客户端再检查一次真实性和完整性。

前两次握手是明文, 后两次握手是密文。 所以都要检查身份真实性和数据完整性。

ca的作用:
ca起到一个权威中间人的角色,如果脱离了ca, 那么证书还是证书,还能加密,保证数据完整性。 但是无法应用在客户端去认定服务器身份合法这个场景下。

  

下面就详细说下 脱离了ca签发的证书的应用:
  

自签名证书:

证书如果没有权威机构的签名,就是没有权威机构给你签发身份证。 那么这时候身份认证的场景变了。
这时候的认证场景就变成了,不再是某个官方权威说了算,而是假设第一次碰到这个证书,会认为,这个证书与之捆绑的实体之间是合法的并做记录。如果当这个实体下次捆绑了另一个证书,那么就是非法的。

这种情况常用于android中安装和校验app的时候,会先假设第一次安装的是合法的应用,认定这个app证书中的公钥是合法的公钥。然后通过自签名的证书,校验签名,就能实现后续安装是否合法以及完整性。

android中的如何对app进行身份认定和不被篡改:

android系统在安装app时候会进行校验applicationId,applicationId 不同会认定为不同应用。相同应用,第二次安装会校验证书是否和之前app的证书相同,如果相同则两个包很可能来自同一个身份。 如果证书不同,也就是该包被另一个身份用自己的私钥重新签名过,就会拒绝安装。 然后通过公钥来解密签名,如果能解密,说明身份是ok的。否则拒绝安装。比对解密签名后的hash 与apk包内的cert.sf文件(该文件是apk内所有文件生成的hash文件)是否一致,如果相同则认定为没有被篡改。

android在提交应用商店的问题:

应用商店也会校验 后续的上传和第一次上传时的证书,以及类似上述的后续的一系列校验。防止合法的开发者平台被盗后,上传非法应用。

android在接入第三方sdk的问题:

接入第三方sdk 会提交applicationId 和 sha1 值。 这个sha1值就是对 证书原文的签名后的sha1,也就是证书指纹。这个证书是证书库里最初的那个证书(x509格式),而不是对apk签名后生成的证书(PKCS#7)。一般的证书签名的主体是证书原文本身,而对apk签名还额外会对apk所有文件生成的hash值文件(cert.sf)进行一次签名。

第三方平台会记录 applicationId 与sha1 的对应关系。 当有假冒app试图接入时候,由于会对app内的PKCS#7证书转换为原始的x509格式证书,重新生成sha1值,与用户提交sha1 比对, 如果相同则说明证书很可能是ok的。 因为sha1就是证书的指纹。 之后就会通过证书中的公钥来校验签名,从而最终确认身份合法性以及信息完整性。

第三方平台之所以需要用户去提交证书指纹sha1值,多了这一步,就意味着你的证书是可以更换的,一旦更换了证书,就必须提交新的指纹给我,然后我来做匹配。而应用商店没有这个功能, 一旦你的证书的私钥丢了, 那就必须重新建一个新的app。

总结来看证书的身份认定机制:

在ssl协议下,这种场景是 浏览器用于认定合法的服务器身份。 在自签名证书下,需要用户选择是否信任该证书。

在android app采用自签名证书的场景下, 证书起到了 假设第一次的证书合法,公钥合法,后续如果证书不一致或不能够完成签名校验,就是非法。

证书库:

证书库应该满足PKCS#12协议。 但是jdk提供了制作证书的工具keytool 可以生成keystore类型的证书库,后缀为jks。 keystore pk12可以通过keytool命令互相转换。

证书库是个证书的容器, 可以用来创建数字证书。 在keystore证书库中,所有的数字证书是以一条一条(采用别名alias区别)的形式存入证书库的。证书库中的证书格式为pk12,即包含私钥。 如果导出证书的话, 可以导出为x509不包含私钥的格式 或者pk12包含私钥的证书。 也可以也可以用-import参数加一个证书或证书链到信任证书。

android中一般都采用读取证书库的方式,通过证书库来创建一个证书,通过alias来区分。 所以在签名的时候,一个alias是一个证书,不同的alias是不同的证书,不要搞错了。

几个关系:

证书和非对称加密算法的关系:
证书代表一个身份的主体,包含了非对称秘钥体系中的公钥,以及用私钥对证书签名。这种组织结构,把非对称加密算法从加密的功能,拓宽到了用于身份认证,信息完整性上。这体现在了证书的作用。 本质还是利用了非对称加密算法的特性。

ssl协议和证书的关系。
因为证书解决了客户端对服务器的身份认证(自签名证书除外),同时也解决了加密,和信息完整性,所以ssl协议基于证书来实现。

Ⅳ Https 证书校验加密机制

数字证书中包含的信息:
1、证书的版本信息;
2、证书的序列号,每个证书都有一个唯一的证书序列号;
3、证书所使用的签名算法;
4、证书的发行机构名称,命名规则一般采用X.500格式;
5、证书的有效期,通用的证书一般采用UTC时间格式;
6、证书所有人的名称,命名规则一般采用X.500格式;
7、证书所有人的公开密钥;
8、证书发行者对证书的签名。

流程:
1.客户端发送https请求。
2.服务端返回数字证书给客户端。
3。 客户端进行验证 ,验证成功,则随机生成字符串,并使用证书上的公钥进行加密发送给服务端。
4.服务端使用私钥对加密串进行解密,解出来的就是对称加密的密钥。
第三步中客户端具体验证原理:
签名:服务器对原信息进行HASH计算(一般是sha1或sha256)生成一个hash值,这个值就是指纹,然后将指纹用 CA机构的根私钥 进行非对称加密,生成的就是数字签名。
浏览器从证书中获取证书的颁发机构,从系统内置CA机构证书中查找,如果没有,就会有警告提示,就的话就获取对应机构的根公钥,用根公钥对签名进行简侍非对称解密,得到这个指纹hash值。客户端再次对原信息行一次HASH计算,得到一个新的指纹hash1值,如果解密出来的hash与浏览器自己算出来的hash1一致,就说明证书没有被修改过。

(之所以是对指纹进行加密,是因为如果对原文派乎进行拦羡吵加密的话,非对称加密的速度非常的慢,效率不高)

Ⅳ TLS/SSL数字证书里的指纹算法、签名算法和签名哈希算法各是做什么用的

签名哈希算法
当用公钥解密出数据后,通过签名哈希算法计算出传输内容的hash值,同时比对随内容一起传过来的hash值,确定传输内容是否被篡改知烂
签名算法
传递信息的hash指纹是加密后随内容一起传递的,这为了防止不会好意的人同时修改信息内容和其中的hash值,达到相匹配,让签名哈搭备漏希算法步骤失去真正作用。所以hash值发出前都需要滚伍加密,这是为了数据传输更安全上的一道保险锁。
签名算法就是为了解密被加密的传递信息的hash指纹
指纹算法
简单来讲就是验证收到的数字证书本身有没有问题。
通过指纹算法计算证书hash值(指纹),和证书中给出的指纹比对,确认证书正确。

Ⅵ ssl证书 指纹算法 是什么意思

因特网的 超文本传输协基友链议 (HTTP)使用 SSL 来实现安全的通信。搏孙 在客户端与服务器告橡间传输的数据是通过使用对称算法(如 DES 或 RC4)进行加密的。公用密钥算法(通常为 RSA)是用来获得加密密钥交换和数字签名的,此算法使用服务器的SSL数字证书...

Ⅶ https传输过程

HTTPS传输过程主要涉及到对称加密和非对称加密两种方式,对称加密用来加密数据内容,非对称加密用来加密对称加密的秘钥。

加密和解密使用相同的密钥

使用公钥进行加密,私钥进行解密;私钥加密的话就使用公钥解密

A向B发送消息 使用B的公钥进行加密 B收到密文后使用自己的私钥进行解密 反之亦然

https协议采用的就是这种加密方式

为了解决在对称加密/非对称加密中公钥被窃取的情况。

A先生成一个对话密钥,然后把对话密钥发送给B。但是这个对话密钥要经过B的公钥进行加密,B收到后用自己的私钥进行解密。这样就解决了对称加密时公钥容易被截取的缺陷。

实际上就是对称加密的密钥进行非对称加密

B的公钥是在最开始连接建立的时候发送给A的。假如这个时候有一个中间人截取了B的公钥,然后将自己的公钥发送给A。A在给B发送消息时,想用B的公钥进行加密。但实际上用的是中间人的公钥。中间人截取了A给B发送的消息,然后用自己的私钥解密。就可以随意读取消息的内容。
此外,中间人也可以使用B的公钥来加密一些消息传输给B,让B以为中间人就是A

用于防止中间人攻击

数字证书是由专业的机构颁发的CA(Certificate Authority)机构

CA机构通过服务端提供的相关信息生成证书,证书的主要内容有:公钥(Public Key)、ISSUER(证书的发布机构)、Subject(证书持有者)、证书有效期、签名算法、指纹及指纹算法。

数字证书是如何保证公钥来自请求的服务器呢?数字证书上由持有人的相关信息,通过这点可以确定其不是一个中间人;但是证书也是可以伪造的,如何保证证书为真呢?

浏览器接收到证书以后,就要开始进行验证工作了。首先从证书中得知证书的颁发机构,然后从浏览器系统中去寻找此颁发机构的根证书。上面我们也看到,世界上权威CA机构的根证书都是预先嵌入到浏览器中的,如果在浏览器系中没有找到对应的根证书,就代表此机构不是受信任的,那么就会警告无法确认证书的真假,比如以前打开12360网站就会提示,现在不会了

如果我们找到了证书颁发机构的根证书,那么就从根证书中取得那个根公钥,用根公钥去解密此证书的数字签名,成功解密的话就得到证书的指纹和指纹算法,指纹是证书内容通过指纹算法计算得到的一个hash值,这里我们称之为h1,h1代表证书的原始内容;然后用指纹算法对当前接收到的证书内容再进行一次hash计算得到另一个值h2,h2则代表当前证书的内容,如果此时h1和h2是相等的,就代表证书没有被修改过。如果证书被篡改过,h2和h1是不可能相同的,因为hash值具有唯一性,不同内容通过hash计算得到的值是不可能相同的

有人说假如证书上的指纹是不法分子伪造的,伪造是没有用的,因为你伪造的指纹不可能用CA机构的根私钥去加密(根私钥是CA机构绝对保密的),伪造者只能拿自己的秘钥去加密这个伪造的指纹,但当我们拿机构的根公钥去解密伪造指纹的时候是不可能成功的(加密内容只能由一对公钥私钥解密)

在证书没有被修改过的基础上,再检查证书上的使用者的URL(比如csdn.net)和我们请求的URL是否相等,如果相等,那么就可以证明当前浏览器链接的网址也是正确的,而不是一些钓鱼网之类的

但如果浏览器的连接被某个中间人截取了,中间人也可以发一个由权威的CA机构颁发的证书给浏览器,然后也可以通过证书没有被篡改的验证,但是在证书没有被篡改的前提下,通过对比证书上的URL和我们请求的URL是否相同,我们还是可以判断当前证书是不是服务器发的证书。可以这么理解,因为URL具有唯一性,所以中间人的证书的上的URL和我们的证书的URL是不可能相同的,如果中间人修改了自己证书上的URL,那么就通过不了证书没有被篡改的验证,所以中间人的证书也是欺骗不了我们的

到这里我们认证了三点信息:

https就是在http和tcp之间加入了一层SSL层。https的安全基础就是ssl。

https协议就是由http+ssl组成的可以进行加密传输和身份认证的网络协议。https的作用:

所以在证书验证阶段使用的是非对称加密(即生成会话密钥的阶段),在内容传输的时候还是对称加密

握手阶段我们需要注意三点:

从上面可以得知,整个会话过程中(包括握手以及之后的数据传输)服务器的公钥和私钥只用到了一次

Ⅷ 如何获取数字证书(x509Certificate)中的指纹算法

创建X509证书方法较多,在Windows 环境下大致总结了几中办法,
1) 通过CA获取证书,
2) 通过微软提供的makecert 工具败弊掘得到测试证书
3) 编程的方法创建,.Net提供了 X509Certificate2 类,该类可以用于创建证书,但只能从RawData中创建,创建后无法修改除FriendlyName以外的任何属性。

我在互联网上找了很久,始终没有找到完全通过程序创建自定义的证书的方法。后来想了一个折中办法,就是用程序调用 makecert.exe 先生成一个证书,证书的一些参数如Subject,有效期,序列号等可以通过参数传入,然后把生成的证书文件读到Rawdata中,得到X509Certificate2 类型的证书对象。当然这种方法确实比较笨,必须要依赖外部进程。等后面有时间的话,我还是想按照X509 V3 标准,自己创建RawData,然后生成证书,这样应该是比较灵活的做法。不知道网友们有没有什么更好的方察核法来创建一个自定义的证书。

通过 makecert.exe 创建X509证书的代码如下,供大家参考

static object semObj = new object();

/// <summary>
/// 自定义的证书信息
/// </summary>
public class T_CertInfo
{
public String FriendlyName;
public String Subject;
public DateTime BeginDate;
public DateTime EndDate;
public int SerialNumber;
}

/// <summary>
/// 生成X509证书
/// </summary>
/// <param name="makecrtPath">makecert进程的目录</param>
/// <param name="crtPath">证书文件临时目录</param>
/// <param name="certInfo">证书信息</param>
/// <returns></returns>
public static X509Certificate2 CreateCertificate(String makecrtPath, String crtPath,
T_CertInfo certInfo)
{
Debug.Assert(certInfo != null);
Debug.Assert(certInfo.Subject != null);

string MakeCert = makecrtPath + "makecert.exe";
string fileName = crtPath + "cer";

string userName = Guid.NewGuid().ToString();

StringBuilder arguments = new StringBuilder();

arguments.AppendFormat("-r -n \"{0}\" -ss my -sr currentuser -sky exchange ",
certInfo.Subject);

if (certInfo.SerialNumber > 0)
{
arguments.AppendFormat("-# {0} ", certInfo.SerialNumber);
}

arguments.AppendFormat("-b {0} ", certInfo.BeginDate.ToString(@"MM\/dd\/yyyy"));
arguments.AppendFormat("-e {0} ", certInfo.EndDate.ToString(@"MM\/dd\卜慧/yyyy"));
arguments.AppendFormat("\"{0}\"", fileName);

Ⅸ https数字证书验证原理

数字证书是Https实现安全传输的关键,它是由权威的CA机构颁布。如上图 GeoTrust 便是一个CA机构。证书的主要内瞎凯容包含如下几点:公钥、证书发布机构、证书持有者、证书有效期、签名算法、 指纹 和 指纹算法 。

在网络传输中,要想实现自己的数据能够安全的橡神帆传输,需要对请求数据进行加密。这样即使被数据包被截取,数据也不会被泄漏。

该证书是 CA机构 颁发给 申请者 的。

在网络传输中,若直接传输对称加密的秘钥。请求被拦截后,密钥也会泄露,造成信息泄露。所以HTTPS首先采取非梁雹对称加密方式,将公钥传输给浏览器。同时还会携带一些其他信息(这些信息组成证书)。

如下图所示,证书中 使用者 字段包含的内容时 *.csdn.net ,这个字段可以让浏览器供浏览器进行验证。(浏览器可以判定是否是目标服务器发送的证书,而非三方服务器发送的证书)。

服务器将该证书发送给浏览器的。

浏览器内置 CA机构 为 自己颁发的证书 。即 根证书
谷歌浏览器:设置-->高级-->管理证书--->受信任的根证书颁发机构

根证书是浏览器内置的。 根证书中携带的是CA的根公钥。 而根私钥是绝对保密的

CA机构颁发给申请者的CA证书中,存在一个 指纹 属性,该属性可以理解为证书身份的唯一标识。
指纹: 证书信息经过指纹算法sha1计算出hash值,然后使用 根密钥 进行加密。

https://www.cnblogs.com/MR-Guo/p/11447856.html

热点内容
g代码编译器 发布:2025-04-22 20:25:20 浏览:272
段式编译器 发布:2025-04-22 20:15:45 浏览:202
android原版 发布:2025-04-22 20:15:04 浏览:74
特种兵一个组怎么配置 发布:2025-04-22 20:01:15 浏览:733
oracle数据库命令 发布:2025-04-22 19:47:55 浏览:564
python异或运算符 发布:2025-04-22 19:45:21 浏览:832
网络为什么改不了服务器 发布:2025-04-22 19:44:38 浏览:535
js压缩base64 发布:2025-04-22 19:29:53 浏览:200
飓风加密工具 发布:2025-04-22 19:27:50 浏览:640
发票江苏服务器地址 发布:2025-04-22 19:21:29 浏览:34