大数据算法面试
❶ 数据分析师常见的面试问题
关于数据分析师常见的面试问题集锦
1、你处理过的最大的伏汪隐数据量?你是如何处理他们的?处理的结果。
2、告诉我二个分析或者计算机科学相关项目?你是如何对其结果进行衡量的?
3、什么是:提升值、关键绩效指标、强壮性、模型按合度、实验设计、2/8原则?
4、什么是:协同过滤、n-grams, map rece、余弦距离?
5、如何让一个网络爬虫速度更快、抽取更好的信息以及更好总结数据从而得到一干净的数据库?
6、如何设计一个解决抄袭的方案?
7、如何检验一个个人支付账户都多个人使用?
8、点击流数据应该是实时处理?为什么?哪部分应该实时处理?
9、你认为哪个更好:是好的数据还是好模型?同时你是如何定义“好”?存在所有情况下通用的模型吗?有你没有知道一些模型的定义并不是那么好?
10、什么是概率合并(aka模糊融合)?使用sql处理还是其它语言方便?对于处理半结构化的数据你会选择使用哪种语言?
11、你是如何处理缺少数据的?你推荐使用什么样的处理技术?
12、你最喜欢的编程语言是什么?为什么?
13、对于你喜欢的统计软件告诉你喜欢的与不喜欢的3个理由。
14、sas, r, python, perl语言的区别是?
15、什么是大数据的诅咒?
16、你参与过数据库与数据模型的设计吗?
17、你是否参与过仪表盘的设计及指标选择?你对于商业智能和报表工具有什么想法?
18、你喜欢td数据库的什么特征?
19、如何你打算发100万的营销活动邮件。你怎么去优化发送?你怎么优化反应率?能把这二个优化份开吗?
20、如果有几个客户查询oracle数据库的效率很低。为什么?你做什么可以提高速度10倍以上,同时可以更好处理大数量输出?
21、如何把非结构化的数据转换成结构化的数据?这是否真的有必要做这样的转换?把数据存成平面文本文件是否比存成关系数据库更好?
22、什么是哈希表碰撞攻击?怎么避免?发生的频率是多少?
23、如何判别maprece过程有好的负载均衡?什么是负载均衡?
24、请举例说明maprece是如何工作的?在什么应用场景下工作的很好?云的安全问题有哪些?
25、(在内存满足的情况下)你认为是100个小的哈希表好还是一个大的哈希表,对于内在或者运行速度来说?对于数据库分析的评价?
26、为什么朴素贝叶斯差?你如何使用朴素贝叶斯缺厅来改进爬虫检验算法?
27、你处理过白名单吗?主要的规则?(在欺诈或者爬行检验的情况下)
28、什么是星型模型?什么是查询表?
29、你可以使用excel建立逻辑回归模型吗?如何可以,说明一下建立过程?
30、在sql, perl, c++, python等编程过程上,待为了提升速度优化过相关代码或者算法吗?如何及提升多少?
31、使用5天完成90%的精度的解决方案还是花10天完成100%的精度的解决方案?取决于什么内容?
32、定义:qa(质量保障)、六西格玛、实验设计。好的与坏的实验设计能否举个案例?
33、普通线性回归模型的缺陷是什么陵唤?你知道的其它回归模型吗?
34、你认为叶数小于50的决策树是否比大的好?为什么?
35、保险精算是否是统计学的一个分支?如果不是,为何如何?
36、给出一个不符合高斯分布与不符合对数正态分布的数据案例。给出一个分布非常混乱的数案例。
37、为什么说均方误差不是一个衡量模型的好指标?你建议用哪个指标替代?
38、你如何证明你带来的算法改进是真的有效的与不做任何改变相比?你对a/b测试熟吗?
39、什么是敏感性分析?拥有更低的敏感性(也就是说更好的强壮性)和低的预测能力还是正好相反好?你如何使用交叉验证?你对于在数据集中插入噪声数据从而来检验模型的.敏感性的想法如何看?
40、对于一下逻辑回归、决策树、神经网络。在过去XX年中这些技术做了哪些大的改进?
41、除了主成分分析外你还使用其它数据降维技术吗?你怎么想逐步回归?你熟悉的逐步回归技术有哪些?什么时候完整的数据要比降维的数据或者样本好?
42、你如何建议一个非参数置信区间?
43、你熟悉极值理论、蒙特卡罗逻辑或者其它数理统计方法以正确的评估一个稀疏事件的发生概率?
44、什么是归因分析?如何识别归因与相关系数?举例。
45、如何定义与衡量一个指标的预测能力?
46、如何为欺诈检验得分技术发现最好的规则集?你如何处理规则冗余、规则发现和二者的本质问题?一个规则集的近似解决方案是否可行?如何寻找一个可行的近似方案?你如何决定这个解决方案足够好从而可以停止寻找另一个更好的?
47、如何创建一个关键字分类?
48、什么是僵尸网络?如何进行检测?
49、你有使用过api接口的经验吗?什么样的api?是谷歌还是亚马逊还是软件即时服务?
50、什么时候自己编号代码比使用数据科学者开发好的软件包更好?
51、可视化使用什么工具?在作图方面,你如何评价tableau?r?sas?在一个图中有效展现五个维度?
52、什么是概念验证?
53、你主要与什么样的客户共事:内部、外部、销售部门/财务部门/市场部门/it部门的人?有咨询经验吗?与供应商打过交道,包括供应商选择与测试。
54、你熟悉软件生命周期吗?及it项目的生命周期,从收入需求到项目维护?
55、什么是cron任务?
56、你是一个独身的编码人员?还是一个开发人员?或者是一个设计人员?
57、是假阳性好还是假阴性好?
58、你熟悉价格优化、价格弹性、存货管理、竞争智能吗?分别给案例。
59、zillow’s算法是如何工作的?
60、如何检验为了不好的目的还进行的虚假评论或者虚假的fb帐户?
61、你如何创建一个新的匿名数字帐户?
62、你有没有想过自己创业?是什么样的想法?
63、你认为帐号与密码输入的登录框会消失吗?它将会被什么替代?
64、你用过时间序列模型吗?时滞的相关性?相关图?光谱分析?信号处理与过滤技术?在什么样的场景下?
65、哪位数据科学有你最佩服?从哪开始?
66、你是怎么开始对数据科学感兴趣的?
67、什么是效率曲线?他们的缺陷是什么,你如何克服这些缺陷?
68、什么是推荐引擎?它是如何工作的?
69、什么是精密测试?如何及什么时候模拟可以帮忙我们不使用精密测试?
70、你认为怎么才能成为一个好的数据科学家?
71、你认为数据科学家是一个艺术家还是科学家?
72、什么是一个好的、快速的聚类算法的的计算复杂度?什么好的聚类算法?你怎么决定一个聚类的聚数?
73、给出一些在数据科学中“最佳实践的案例”。
74、什么让一个图形使人产生误解、很难去读懂或者解释?一个有用的图形的特征?
75、你知道使用在统计或者计算科学中的“经验法则”吗?或者在商业分析中。
76、你觉得下一个20年最好的5个预测方法是?
77、你怎么马上就知道在一篇文章中(比如报纸)发表的统计数字是错误,或者是用作支撑作者的论点,而不是仅仅在罗列某个事物的信息?例如,对于每月官方定期在媒体公开发布的失业统计数据,你有什么感想?怎样可以让这些数据更加准确?
;❷ 我想去学习大数据,听说要经过面试,面试的内容有哪些
1.海量日志数据,提取出某日访问网络次数最多的那个IP。
2.搜索引擎会通过日志文件把用户每次检索使用的桥宽睁所有检索串都记录下来,每个查询串的长度为1-255字节。
3.有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。返回频数最高的100个词。
4、腾敏岁讯面试题:给40亿个不重复的unsigned int的整巧袜数,没排过序的,然后再给一个数,如何快速判断这个数是否在那40亿个数当中?
❸ 大厂数据分析面试题,大数据结构化面试
作为程序员,你认为代码只要实现功能就可以了吗?
其实,工作2~3年后,你会陪蠢发现随着工作的深入,工作中遇到的问题会变大,处理的数据量也会变大。
一开始,我可能会耐心加班,等机器处理好了再回家,但最后,处理完这些数据通常是在深夜。
面对这样的问题,其实可以用数据结构解决。 仔细整理开发中遇到的问题,会发现很多工作中的问题,用简单的逻辑就能解决。
举个例子,你很熟悉。 如何实时统计99%的业务接口响应时间?
您可能会首先想到,每次查询时,都会按照从小到大的顺序对所有响应时间进行排序。 如果总共有1200个数据,第1188个数据将有99%的响应时间。
很明显,每次用这种方法查询都要排序,效率非常低。
但是,如果知道“堆”数据结构,两个堆就可以非常有效地解决这个问题。
因此,数据结构是提高我们程序员工作效率的利器!
另外,已经工作了2到3年的你,可能想跳槽进入大工厂。
但是,当你去面试时,你经常会碰到数据结构和算法的主题。
目前,数据结构和算法是许多知名企业面试的必考问题。
国内外各大互联网公司在面试过程中,都多少听说了一些有关数据结构和算法的主题。
而且,规模越大的公司,越重视数据结构和算法。
例如,2019年6月,阿里面试中涉及的数据结构主题:
2019年华为面试涉及的数据结构主题:
目前,许多中小企业的面试问题都涉瞎盯及数据结构知识。
其实,你会发现,即使是大小公司,为了筛选更优秀的人磨乱和才,面试问题的难度也会越来越大。
因此,数据结构是进入大厂的重要门槛。
总之,如果你想提高工作效率,进入更大的公司,数据结构和算法是你必须跨越的一道坎。
从易传传媒、亚信、奥鹏教育、程序员到架构师再到技术经理樊延欣老师,前后六年通过各种工作方式打好数据结构基础,在过程中梳理了许多心得,进行了深入思考。
和樊延欣老师一起,死战数据结构,跳过代码陷阱,尽快完成数据结构通关,有机会升职更好。
扫描堆场上的二维码,点击组,立即抢购
原价69元,限时优惠49元
老师怎么解释这门课?#
老师介绍枯燥抽象的结构规则用详细的方法映射到实际项目中。 然后尽量脱离复杂的数学基础,在许多常见的应用场合映射相关理论,降低学习者的理解门槛,使其零基础也能学习。
同时,该课程至少涵盖了50%常见互联网公司中数据结构方面的面试问题纲领,序列和栈是基础性主题,树是更高级的主题,可以理解和把握,发挥面试信心,更上一层楼
#课程介绍#
#我能得到什么? #
1、提高编程效率和质量
熟悉数据结构原理,复杂的项目无需为需求实现原理而烦恼。
2、优化能力提升
随着了解的加深,能够发现与工作中数据结构特性相违背的代码,并具有优化修改的能力。
3、提高面试成功率
学习50%以上互联网公司数据结构的面试问题纲领,提高面试合格率。
#使用者群组#
1、开发业务系统2年,有相关项目经验,不断重复制作业务车轮希望提高的程序员。
有2、3~5年开发经验,但基础不牢固,想改变体系结构的程序员。
3、基础扎实,需要大量用例和思考才能巩固基础的优秀毕业生/在校生。
#新课初优惠#
限时49元
(成本69 )。
每百人加价十元
第26节课,平均每课2元,持续一个月,改变报关大厂面试机会
享受七折的折扣
自考/成考有疑问、不知道自考/成考考点内容、不清楚当地自考/成考政策,点击底部咨询官网老师,免费领取复习资料:https://www.87dh.com/xl/
❹ 大数据面试流程是怎么样的
大数据开发面试主要看的是能力和项目
❺ 大数据分析师面试必备:java与mysql解析
【导读】作为大数据工程师,其必须要掌握的基础知识就是java与mysql的关系、交互和连接,作为基础,也是面试考官经常会考的内容,为了帮助大家都能顺利通过考试,今天小编就来和大家唠一唠java与mysql的关系、交互和连接,好了,开始今天的内容大数据分析师面试必备:java与mysql解析。
1. SQL语言四大类:
DQL 数据查询语言 select
DML 数据操作语言 insert、update、delete
DDL 数据界说语言 create、alter
DCL 数据控制语言 grant权限
2. mysql数据库中的decimal类型(是数值型,不能存放字符串):
举例:decimal(18,0) 常用于身份证号码,但是带x的不可以。
举例:decimal(5,2)
状况一:假设小数点前面是3位,后边是2位,正常状况。
状况二:5指的是小数点前后不能超过5位,小数点后有必要是2位。
3. mysql中InnoDB和MyISAM引擎的差异:
innodb支撑:事务和主外键
myisam不支撑:事务和主外键
4. 【不需要背诵,选择题考点】向mysql中,a向表中添加数据的几种写法,题目:id int 主键自增,name varchar(11)
不为空。
5. 操作mysql数据库表有两种方式,第一种:点八点吧;第二种:写代码。【不需要背诵,只需要了解,考试选择题会出】
6. 在Java中,简述面向对象三大特征。
7. 在Java中,常用关键字:
1. 定义类的关键字是什么? class
2. 继承的关键字是什么? extends
3. 定义接口的关键字是什么? interface
4. 实现接口的关键字是什么? implements
5. 抽象类的关键字是什么? abstract
8. 在Java中,抽象类和接口的区别:
1. 抽象类中可以包含普通方法和抽象方法,接口中只能包含抽象方法
2. 抽象类中可以有构造方法,接口中没有构造方法
3. 抽象类只能单继承,可以实现多个接口
9. Java接口中有哪些成员?
1. 构造方法,没有
2. 常量,默认访问修饰符public static final,没有变量
3. 抽象方法,默认访问修饰符public abstract
10. 在Java中,抽象类和抽象方法的关系:
1. 抽象类中可以包含普通方法和抽象方法,抽象方法一定存在抽象类中。
2. 子类继承抽象父类,必须实现|重写抽象方法,除非子类也是抽象类。
3. 【判断题】抽象类中必须包含抽象方法?【错误×】
4. 【判断题】抽象方法一定存在抽象类中?【正确√】
11. Java重载的特点:
1. 在同一个类中
2. 方法名相同
3. 参数列表(个数、类型、顺序)不同
4. 与返回值类型和访问修饰符无关
12. Java重写的特点:
1. 在父子类中
2. 方法名相同
3. 参数列表相同
4. 返回值类型相同,或是其子类
5. 访问修饰符相同,或不能严于父类
13. 列举几种Java实现多态的形式:
1. 继承的存在
2. 父类引用指向子类对象 | 向上转型
3. 父类作为方法的返回值类型,父类作为方法的参数
14. Java接口的特性:单根性和传递性
15. 在Java中,throws和throw的区别:
1. throws 声明异常,用在定义方法小括号的后面
2. throw 抛出异常,写在方法体内
以上就是小编今天给大家整理发送的关于大数据分析师面试必备:java与mysql解析的相关内容,希望对各位考生有所帮助,想知道更多关于数据分析师的基本要求有哪些,关注小编持续更新数据分析师岗位解析。
❻ 算法面试
我在《再谈“我是怎么招程序员”》中比较保守地说过,“问难的算法题并没有错,错的很多面试官只是在肤浅甚至错误地理解着面试算法题的目的。”,今天,我想加强一下这个观点——我反对纯算法题面试!(注意,我说的是纯算法题)图片源Wikipedia(点击图片查看词条)我再次引用我以前的一个观点——能解算法题并不意味着这个人就有能力就能在工作中解决问题,你可以想想,小学奥数题可能比这些题更难,但并不意味着那些奥数能手就能解决实际问题。好了,让我们来看一个示例(这个示例是昨天在微博上的一个讨论),这个题是——“找出无序数组中第2大的数”,几乎所有的人都用了O(n)的算法,我相信对于我们这些应试教育出来的人来说,不用排序用O(n)算法是很正常的事,连我都不由自主地认为O(n)算法是这个题的标准答案。我们太习惯于标准答案了,这是我国教育最悲哀的地方。(广义的洗脑就是让你的意识依赖于某个标准答案,然后通过给你标准答案让你不会思考而控制你)功能性需求分析试想,如果我们在实际工作中得到这样一个题 我们会怎么做?我一定会分析这个需求,因为我害怕需求未来会改变,今天你叫我找一个第2大的数,明天你找我找一个第4大的数,后天叫我找一个第100大的数,我不搞死了。需求变化是很正常的事。分析完这个需求后,我会很自然地去写找第K大数的算法——难度一下子就增大了。很多人会以为找第K大的需求是一种“过早扩展”的思路,不是这样的,我相信我们在实际编码中写过太多这样的程序了,你一定不会设计出这样的函数接口 —— Find2ndMaxNum(int* array, int len),就好像你不会设计出 DestroyBaghdad(); 这样的接口,而是设计一个DestoryCity( City& ); 的接口,而把Baghdad当成参数传进去!所以,你应该是声明一个叫FindKthMaxNum(int* array, int len, int kth),把2当成参数传进去。这是最基本的编程方法,用数学的话来说,叫代数!最简单的需求分析方法就是把需求翻译成函数名,然后看看是这个接口不是很二?!(注:不要纠结于FindMaxNum()或FindMinNum(),因为这两个函数名的业务意义很清楚了,不像Find2ndMaxNum()那么二)非功能性需求分析性能之类的东西从来都是非功能性需求,对于算法题,我们太喜欢研究算法题的空间和时间复杂度了。我们希望做到空间和时间双丰收,这是算法学术界的风格。所以,习惯于标准答案的我们已经失去思考的能力,只会机械地思考算法之内的性能,而忽略了算法之外的性能。如果题目是——“从无序数组中找到第K个最大的数”,那么,我们一定会去思考用O(n)的线性算法找出第K个数。事实上,也有线性算法——STL中可以用nth_element求得类似的第n大的数,其利用快速排序的思想,从数组S中随机找出一个元素X,把数组分为两部分Sa和Sb。Sa中的元素大于等于X,Sb中元素小于X。这时有两种情况:1)Sa中元素的个数小于k,则Sb中的第 k-|Sa|个元素即为第k大数;2) Sa中元素的个数大于等于k,则返回Sa中的第k大数。时间复杂度近似为O(n)。搞学术的nuts们到了这一步一定会欢呼胜利!但是他们哪里能想得到性能的需求分析也是来源自业务的!我们一说性能,基本上是个人都会问,请求量有多大?如果我们的FindKthMaxNum()的请求量是m次,那么你的这个每次都要O(n)复杂度的算法得到的效果就是O(n*m),这一点,是书呆子式的学院派人永远想不到的。因为应试教育让我们不会从实际思考了。工程式的解法根据上面的需求分析,有软件工程经验的人的解法通常会这样:1)把数组排序,从大到小。2)于是你要第k大的数,就直接访问 array[k]。排序只需要一次,O(n*log(n)),然后,接下来的m次对FindKthMaxNum()的调用全是O(1)的,整体复杂度反而成了线性的。其实,上述的还不是工程式的最好的解法,因为,在业务中,那数组中的数据可能会是会变化的,所以,如果是用数组排序的话,有数据的改动会让我重新排序,这个太耗性能了,如果实际情况中会有很多的插入或删除操作,那么可以考虑使用B+树。工程式的解法有以下特点:1)很方便扩展,因为数据排好序了,你还可以方便地支持各种需求,如从第k1大到k2大的数据(那些学院派写出来的代码在拿到这个需求时又开始挠头苦想了)2)规整的数据会简化整体的算法复杂度,从而整体性能会更好。(公欲善其事,必先利其器)3)代码变得清晰,易懂,易维护!(学院派的和STL一样的近似O(n)复杂度的算法没人敢动)争论你可能会和我有以下争论,如果程序员做这个算法题用排序的方式,他一定不会像你想那么多。是的,你说得对。但是我想说,很多时候,我们直觉地思考,恰恰是正确的路。因为“排序”这个思路符合人类大脑处理问题的方式,而使用学院派的方式是反大脑直觉的。反大脑直觉的,通常意味着晦涩难懂,维护成本上升。就是一道面试题,我就是想测试一下你的算法技能,这也扯太多了。没问题,不过,我们要清楚我们是在招什么人?是一个只会写算法的人,还是一个会做软件的人?这个只有你自己最清楚。这个算法题太容易诱导到学院派的思路了。是的这道“找出第K大的数”,其实可以变换为更为业务一点的题目——“我要和别的商户竞价,我想排在所有竞争对手报价的第K名,请写一个程序,我输入K,和一个商品名,系统告诉我应该订多少价?(商家的所有商品的报价在一数组中)”——业务分析,整体性能,算法,数据结构,增加需求让应聘者重构,这一个问题就全考了。你是不是在说算法不重要,不用学?千万别这样理解我,搞得好像如果面试不面,我就可以不学。算法很重要,算法题能锻炼我们的思维,而且也有很多实际用处。我这篇文章不是让大家不要去学算法,这是完全错误的,我是让大家带着业务问题去使用算法。问你业务问题,一样会问到算法题上来。小结看过这上面的分析,我相信你明白我为什么反对纯算法面试题了。原因就是纯算法的面试题根本不能反应一个程序的综合素质!那么,在面试中,我们应该要考量程序员的那些综合素质呢?我以为有下面这些东西:会不会做需求分析?怎么理解问题的?解决问题的思路是什么?想法如何?会不会对基础的算法和数据结构灵活运用?另外,我们知道,对于软件开发来说,在工程上,难是的下面是这些挑战:软件的维护成本远远大于软件的开发成本。软件的质量变得越来越重要,所以,测试工作也变得越来越重要。软件的需求总是在变的,软件的需求总是一点一点往上加的。程序中大量的代码都是在处理一些错误的或是不正常的流程。所以,对于编程能力上,我们应该主要考量程序员的如下能力:设计是否满足对需求的理解,并可以应对可能出现的需求变化。
❼ 常见大数据公司面试问题有哪些
1、您对“大数据”一词有什么了解?
答: 大数据是与复杂和大型数据集相关的宴派术语。关系数据库无法处理大数据,这就是为什么使用特殊的工具和方法对大量数据执行操作的原因。大数据使公司能够更好地了解其业务,并帮助他们从定期收集的非结构化和原始数据中获取有意义的信息。大数据还使公司能够根据数据做出更好的业务决策。散祥渗
2、告诉我们大数据和Hadoop之间的关系。
答: 大数据和Hadoop几乎是同义词。随着大数据的兴起,专门用于大数据操作的Hadoop框架也开始流行。专业人士可以使用该框架来分析大数据并帮助企业做出决策。
注意: 在大数据采访中通常会问这个问题。 可以进一步去回答这个问题,并试图解释的Hadoop的主要组成部分。
3、大数据分析如何有助于增加业务收入?
答:大数据分析对于企业来说已经变得非常重要。它可以帮助企业与众不同,并增加收入。通过预测分析,大数据分析为企业提供了定制的建议。此外,冲脊大数据分析使企业能够根据客户的需求和偏好推出新产品。这些因素使企业获得更多收入,因此公司正在使用大数据分析。通过实施大数据分析,公司的收入可能会大幅增长5-20%。一些使用大数据分析来增加收入的受欢迎的公司是-沃尔玛,LinkedIn,Facebook,Twitter,美国银行等。
❽ 面试大数据工作要做好哪些准备
1、了解要面试的公司
对要面试的公司进行深入的研究了解,包括公司的企业文化,企业的发展状况,从而在面试时轻松面试,成功的概率自然会提高很多。
2、在面试中要介绍自己对于团队精神的认知
面试过程之中有一些招聘方会问到团队精神的问题,但有一些则不会问到这方面的问题,但不会问到这样问题的招聘人员并不表示他对于这样的问题并不关注,要知道在大数据开发技术方面,很多地方都是需要团队协作的。因此迟携,在团队协作方面有着极高的要求,所以我们在招聘过程中一定要讲解到自己对于团队精神理念的认知,以及在团队协作表现方面的能力如何,这会让我们求职成功的概率更高。
3、在大数据面试的时候一定要将自己的项目经验展示出来
我们应聘的工作是大数据方面的工作,因此想要拥有更高的面试成功机会,那么就必须要有相李橡应的项目,在大数据面试技巧这个问题上,我们需要关注的核心要点就是自己的项目经验,如果你本身只有大哪旦旁数据的理论知识,而没有项目实战经验,这种状态之下能够成功应聘上的概率自然降低了很多,为了规避这方面的问题产生,我们一定要做些大数据的项目,积攒项目经验,这样面试的时候也有话说。
❾ 面试大数据工程师,这些技巧你知道吗
考算法,就像很多人说的,知道了一个算法又能怎么样,可能工作中一辈子都用不上,就算能用上,很多的算法都有库和包实现了,拿来用就是了。确实是这样,所以考算法,并不是为了考,为了会,而是为了在探讨算法的过程中,考察和验证一个人是否聪明,是否基本功扎实,是否能够顺畅沟通,是否能够快速反应和学习。在讨论和交流的过程中,发现闪光点。能不能想出耐族来,或是说出来,并不是考算法的要点。
再看写代码,则是更多的为了考察和验证出活的能力。在很多的情况下,用什么语言写是没有要求的。这样,一是可以考察基本功,没有基本功,是不可能能快速出活的。二是可以考察平时的训练积累和经验,包括工作方式,编程风格,思考方法,等等。三是接受任务和完成任务的主动性,是不是愿意接受任何团队需要完成的昌族弊任务。四是完成任务的速度和质量,也就是出活的速度和质量。这种写代码的测试,会是之后工作情景的一个小小的缩影。
从写代码的过程和最后写出的代码,可以深入的考察一个人的基本素质,工作方式,和出活的条件,和出活的效率和质量。
至于主动性,或是责任心,有多方面和多种方式可以考察和验证,比如,聊过去的项目,在项目中的角色,完成的任务,完成的质量。在聊算法,写代码的过程中,也能够窥见一些,因为,一个不主动负责的人,是很难在完成具体任务时佯装出来的。
关于面试大数据工程师,这些技巧你知道吗,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
以上是小编为大家分享的关于面试大数据工程师,这些技巧你知道吗?的相关内容,更多信穗型息可以关注环球青藤分享更多干货