当前位置:首页 » 操作系统 » 回归算法

回归算法

发布时间: 2022-02-02 06:07:52

⑴ 回归算法有哪些

一张图为你解释清楚回归算法

⑵ 线性回归算法原理(越详细越好)

线性回归是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一,运用十分广泛。

分析按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。

如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。

我们以一简单数据组来说明什么是线性回归。假设有一组数据型态为y=y(x),其中

x={0,1,2,3,4,5},y={0,20,60,68,77,110}

如果我们要以一个最简单的方程式来近似这组数据,则非一阶的线性方程式莫属。先将这组数据绘图如下

图中的斜线是我们随意假设一阶线性方程式y=20x,用以代表这些数据的一个方程式。以下将上述绘图的MATLAB指令列出,并计算这个线性方程式的y值与原数据y值间误差平方的总合。

>>x=[012345];

>>y=[020606877110];

>>y1=20*x;%一阶线性方程式的y1值

>>sum_sq=sum(y-y1).^2);%误差平方总合为573

>>axis([-1,6,-20,120])

>>plot(x,y1,x,y,'o'),title('Linearestimate'),grid

如此任意的假设一个线性方程式并无根据,如果换成其它人来设定就可能采用不同的线性方程式;所以我们须要有比较精确方式决定理想的线性方程式。我们可以要求误差平方的总合为最小,做为决定理想的线性方程式的准则,这样的方法就称为最小平方误差(leastsquareserror)或是线性回归。MATLAB的polyfit函数提供了从一阶到高阶多项式的回归法,其语法为polyfit(x,y,n),其中x,y为输入数据组n为多项式的阶数,n=1就是一阶的线性回归法。polyfit函数所建立的多项式可以写成

从polyfit函数得到的输出值就是上述的各项系数,以一阶线性回归为例n=1,所以只有二个输出值。如果指令为coef=polyfit(x,y,n),则coef(1)=,coef(2)=,...,coef(n+1)=。注意上式对n阶的多项式会有n+1项的系数。我们来看以下的线性回归的示范:

>>x=[012345];

>>y=[020606877110];

>>coef=polyfit(x,y,1);%coef代表线性回归的二个输出值

>>a0=coef(1);a1=coef(2);

>>ybest=a0*x+a1;%由线性回归产生的一阶方程式

>>sum_sq=sum(y-ybest).^2);%误差平方总合为356.82

>>axis([-1,6,-20,120])

>>plot(x,ybest,x,y,'o'),title('Linearregressionestimate'),grid

[编辑本段]线性回归拟合方程

一般来说,线性回归都可以通过最小二乘法求出其方程,可以计算出对于y=bx+a的直线,其经验拟合方程如下:

⑶ 小样本回归算法,哪种效果比较好

区别在于总体回归模型比样本回归模型更能精确地反映事物的本质特征,样本回归的误差大。

总体回归模型和样本回归模型都是对随机社会现象的描述,但是总体回归模型是基于研究对象总体数据而进行的回归描述,他对经济现象的解释和说明比较准确,当研究总体太大时,就选取总体部分当做样本来回归分析现象,是对总体回归模型的估计,准确度较低,但是比较常用。
回归分析(regression analysis)是研究一个变量(被解释变量)关于另一个(些)变量(解释变量)的具体依赖关系的计算方法和理论。 从一组样本数据出发,确定变量之间的数学关系式对这些关系式的可信程度进行各种统计检验,并从影响某一特定变量的诸多变量中找出哪些变量的影响显着,哪些不显着。利用所求的关系式,根据一个或几个变量的取值来预测或控制另一个特定变量的取值,并给出这种预测或控制的精确程度。

⑷ 神经网络是回归算法还是分类算法

不是很清楚题主所说的难具体指什么如果题主指应用算法解决实际问题的话决策树要简单一些有很多封装的很好的decisiontree的包,比如CART,C4.5等等而神经网络(NN)一般有大量参数需要手工设置和调节如果题主指算法推导的难度的话两个差不多吧决策树的分裂方法可能稍微简单一下NN的话用BP或者SGD的话都需要用chainrule求导

⑸ 如何用js实现线性回归算法

可以用函数 regress( )来解决。
[b,bint,r,rint,stats] = regress(y,X)
b——拟合线性函数的系数
bint——系数b的置信区间
r——残值向量
rint——残值的置信区间
stats——检验统计量,第一值是回归方程的置信度,第二值是F统计量,第三值是与F统计量相应的p值,当p值很小,说明回归模型成立
X——自变量向量,X=[ones(3,1) x1 x2 x3]
y——应变量向量

⑹ 回归估计的标准误差怎么计算

用k个自变量建立线性方程,预测因变量的值,则自由度

⑺ 简单介绍树回归的算法原理

简单介绍树回归的算法原理
线性回归方法可以有效的拟合所有样本点(局部加权线性回归除外)。当数据拥有众多特征并且特征之间关系十分复杂时,构建全局模型的想法一个是困难一个是笨拙。此外,实际中很多问题为非线性的,例如常见到的分段函数,不可能用全局线性模型来进行拟合。
树回归将数据集切分成多份易建模的数据,然后利用线性回归进行建模和拟合。
构建回归树算法伪代码:
寻找当前最佳待切特征和特征值并返回
如果当前最佳特征没有找到,不可切分,则把当前结点的数据均值作为叶节点
否则用最佳特征和特征值构建当前结点
切分后的左右节点分别递归以上算法
寻找最佳特征算法伪代码:
如果该数据集的特征值只有一种,不可切分,返回当前结点的数据均值作为特征值
否则重复一下步骤直到找到最小总方差
遍历每一列
遍历每列的值
用该值切分数据
计算总方差
如果总方差差值小于最初设定的阈值,不可切分
如果左右样本数小于最初设定的阈值,不可切分
否则返回最佳特征和最佳特征值。
需要输入的参数有:数据集,叶节点模型函数(均值),误差估计函数(总方差),允许的总方差最小下降值,节点最小样本数。

⑻ C语言 多元线性回归算法

从键盘输入abcd,

float x,y,z,M;
M=a*x+b*y+c*x+d

输出M

你要的是这个意思吗?

⑼ 机器学习的方法之回归算法

我们都知道,机器学习是一个十分实用的技术,而这一实用的技术中涉及到了很多的算法。所以说,我们要了解机器学习的话就要对这些算法掌握通透。在这篇文章中我们就给大家详细介绍一下机器学习中的回归算法,希望这篇文章能够帮助到大家。
一般来说,回归算法是机器学习中第一个要学习的算法。具体的原因,第一就是回归算法比较简单,可以让人直接从统计学过渡到机器学习中。第二就是回归算法是后面若干强大算法的基石,如果不理解回归算法,无法学习其他的算法。而回归算法有两个重要的子类:即线性回归和逻辑回归。
那么什么是线性回归呢?其实线性回归就是我们常见的直线函数。如何拟合出一条直线最佳匹配我所有的数据?这就需要最小二乘法来求解。那么最小二乘法的思想是什么呢?假设我们拟合出的直线代表数据的真实值,而观测到的数据代表拥有误差的值。为了尽可能减小误差的影响,需要求解一条直线使所有误差的平方和最小。最小二乘法将最优问题转化为求函数极值问题。
那么什么是逻辑回归呢?逻辑回归是一种与线性回归非常类似的算法,但是,从本质上讲,线型回归处理的问题类型与逻辑回归不一致。线性回归处理的是数值问题,也就是最后预测出的结果是数字。而逻辑回归属于分类算法,也就是说,逻辑回归预测结果是离散的分类。而逻辑回归算法划出的分类线基本都是线性的(也有划出非线性分类线的逻辑回归,不过那样的模型在处理数据量较大的时候效率会很低),这意味着当两类之间的界线不是线性时,逻辑回归的表达能力就不足。下面的两个算法是机器学习界最强大且重要的算法,都可以拟合出非线性的分类线。这就是有关逻辑回归的相关事项。
在这篇文章中我们简单给大家介绍了机器学习中的回归算法的相关知识,通过这篇文章我们不难发现回归算法是一个比较简答的算法,回归算法是线性回归和逻辑回归组成的算法,而线性回归和逻辑回归都有自己实现功能的用处。这一点是需要大家理解的并掌握的,最后祝愿大家能够早日学会回归算法。

⑽ 回归公式的计算

和式号(音译:西格马)
以“∑”来表示和式号(Sign
of
summation)是欧拉(1707-1783)于1755年首先使用的,这个符号是源于希腊文(增加)的字头,“∑”正是σ的大写。
示例:∑An=A1+A2+...+An
∑是数列求和的简记号,它后面的k^2是通项公式,下面的k=1是初始项开始的项数,顶上的n是末项的项数。
n
∑k^2=1^2+2^2+……+n^2……(1)
k=1
n
∑(2k+1)=3+5+……+(2n+1)……(2)
k=1
则(1)+(2)=
n
∑(k+1)^2=2^2+3^2+……+(n+1)^2
k=1
着名的二项式定理的展开式可以表示成
n
∑C(n,k)a^(n-k)b^k.
k=0
由此可见应用的可能,它的应用是相当灵活的。

热点内容
安卓手机涨价怎么办 发布:2025-01-11 23:27:17 浏览:711
三消游戏服务器搭建 发布:2025-01-11 23:20:01 浏览:246
c语言的函数不可单独进行编译 发布:2025-01-11 23:12:33 浏览:17
怎么查信用卡查询密码 发布:2025-01-11 23:11:08 浏览:572
javaexcel源码 发布:2025-01-11 23:11:04 浏览:557
讨论会脚本 发布:2025-01-11 23:09:27 浏览:574
test服务器搭建 发布:2025-01-11 23:03:22 浏览:421
微信里的密码和账号在哪里 发布:2025-01-11 22:46:04 浏览:752
java字符串个数统计 发布:2025-01-11 22:45:05 浏览:543
完美国际2捏脸数据库 发布:2025-01-11 22:45:04 浏览:281