当前位置:首页 » 操作系统 » 算法大数据

算法大数据

发布时间: 2022-02-01 17:10:24

❶ 需要掌握哪些大数据算法

数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART。

1、C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法。
2、2、k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。
3、支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种监督式学习的方法,它广泛的应用于统计分类以及回归分析中。
4、Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。
5、最大期望(EM)算法。在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然 估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl)。
6、PageRank是Google算法的重要内容。2001年9月被授予美国专利,专利人是Google创始人之一拉里·佩奇(Larry Page)。因此,PageRank里的page不是指网页,而是指佩奇,即这个等级方法是以佩奇来命名的。
7、Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器 (强分类器)。
8、K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。
9、Naive Bayes。在众多的分类模型中,应用最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBC)。
10、CART, Classification and Regression Trees。 在分类树下面有两个关键的思想。

关于大数据算法的相关问题推荐CDA数据分析师的相关课程,课程内容兼顾培养解决数据挖掘流程问题的横向能力以及解决数据挖掘算法问题的纵向能力。要求学生具备从数据治理根源出发的思维,通过数字化工作方法来探查业务问题,通过近因分析、宏观根因分析等手段,再选择业务流程优化工具还是算法工具,而非“遇到问题调算法包”点击预约免费试听课。

❷ 算法和大数据算法哪个好

计算机科学在大数据出现之前,非常依赖模型以及算法。人们如果想要得到精准的结论,需要建立模型来描述问题,同时,需要理顺逻辑,理解因果,设计精妙的算法来得出接近现实的结论。因此,一个问题,能否得到最好的解决,取决于建模是否合理,各种算法的比拼成为决定成败的关键。然而,大数据的出现彻底改变了人们对于建模和算法的依赖。举例来说,假设解决某一问题有算法A 和算法B。在小量数据中运行时,算法A的结果明显优于算法B。

❸ 统计模型和大数据模型所使用的主要算法有什么异同

以每24小时作为一份时间(而非自然日),根据用户的配置有两种工作模式:带状模式中,用户仅定义开始日期时,从开始日期(含)开始,每份时间1个分片地无限增加下去;环状模式中,用户定义了开始日期和结束日期时,以结束日期(含)和开始日期(含)之间的时间份数作为分片总数(分片数量固定),以类似取模的方式路由到这些分片里。

1. DBLE 启动时,读取用户在 rule.xml 配置的 sBeginDate 来确定起始时间
2. 读取用户在 rule.xml 配置的 sPartionDay 来确定每个 MySQL 分片承载多少天内的数据
3. 读取用户在 rule.xml 配置的 dateFormat 来确定分片索引的日期格式
4. 在 DBLE 的运行过程中,用户访问使用这个算法的表时,WHERE 子句中的分片索引值(字符串),会被提取出来尝试转换成 java 内部的时间类型
5. 然后求分片索引值与起始时间的差,除以 MySQL 分片承载的天数,确定所属分片

1. DBLE 启动时,读取用户在 rule.xml 配置的起始时间 sBeginDate、终止时间 sEndDate 和每个 MySQL 分片承载多少天数据 sPartionDay
2. 根据用户设置,建立起以 sBeginDate 开始,每 sPartionDay 天一个分片,直到 sEndDate 为止的一个环,把分片串联串联起来
3. 读取用户在 rule.xml 配置的 defaultNode
4. 在 DBLE 的运行过程中,用户访问使用这个算法的表时,WHERE 子句中的分片索引值(字符串),会被提取出来尝试转换成 Java 内部的日期类型
5. 然后求分片索引值与起始日期的差:如果分片索引值不早于 sBeginDate(哪怕晚于 sEndDate),就以 MySQL 分片承载的天数为模数,对分片索引值求模得到所属分片;如果分片索引值早于 sBeginDate,就会被放到 defaultNode 分片上

与MyCat的类似分片算法对比

中间件
DBLE
MyCat

分片算法种类 date 分区算法 按日期(天)分片
两种中间件的取模范围分片算法使用上无差别

开发注意点
【分片索引】1. 必须是字符串,而且 java.text.SimpleDateFormat 能基于用户指定的 dateFormat 来转换成 java.util.Date
【分片索引】2. 提供带状模式和环状模式两种模式
【分片索引】3. 带状模式以 sBeginDate(含)起,以 86400000 毫秒(24 小时整)为一份,每 sPartionDay 份为一个分片,理论上分片数量可以无限增长,但是出现 sBeginDate 之前的数据而且没有设定 defaultNode 的话,会路由失败(如果有 defaultNode,则路由至 defaultNode)
【分片索引】4. 环状模式以 86400000 毫秒(24 小时整)为一份,每 sPartionDay 份为一个分片,以 sBeginDate(含)到 sEndDate(含)的时间长度除以单个分片长度得到恒定的分片数量,但是出现 sBeginDate 之前的数据而且没有设定 defaultNode 的话,会路由失败(如果有 defaultNode,则路由至 defaultNode)
【分片索引】5. 无论哪种模式,分片索引字段的格式化字符串 dateFormat 由用户指定
【分片索引】6. 无论哪种模式,划分不是以日历时间为准,无法对应自然月和自然年,且会受闰秒问题影响

运维注意点
【扩容】1. 带状模式中,随着 sBeginDate 之后的数据出现,分片数量的增加无需再平衡
【扩容】2. 带状模式没有自动增添分片的能力,需要运维手工提前增加分片;如果路由策略计算出的分片并不存在时,会导致失败
【扩容】3. 环状模式中,如果新旧 [sBeginDate,sEndDate] 之间有重叠,需要进行部分数据迁移;如果新旧 [sBeginDate,sEndDate] 之间没有重叠,需要数据再平衡

配置注意点
【配置项】1. 在 rule.xml 中,可配置项为 <propertyname="sBeginDate"> 、 <propertyname="sPartionDay"> 、 <propertyname="dateFormat"> 、 <propertyname="sEndDate"> 和 <propertyname="defaultNode">
【配置项】2.在 rule.xml 中配置 <propertyname="dateFormat">,符合 java.text.SimpleDateFormat 规范的字符串,用于告知 DBLE 如何解析sBeginDate和sEndDate

【配置项】3.在 rule.xml 中配置 <propertyname="sBeginDate">,必须是符合 dateFormat 的日期字符串

【配置项】4.在 rule.xml 中配置 <propertyname="sEndDate">,必须是符合 dateFormat 的日期字符串;配置了该项使用的是环状模式,若没有配置该项则使用的是带状模式

【配置项】5.在 rule.xml 中配置 <propertyname="sPartionDay">,非负整数,该分片策略以 86400000 毫秒(24 小时整)作为一份,而 sPartionDay 告诉 DBLE 把每多少份放在同一个分片

【配置项】6.在 rule.xml 中配置 <propertyname="defaultNode"> 标签,非必须配置项,不配置该项的话,用户的分片索引值没落在 mapFile 定义

❹ 大数据的新算法:简化数据分类

大数据的新算法:简化数据分类

如今,大数据时代悄然来临。专家用“大数据”的表达描述大量信息,比如数十亿人在计算机、智能手机以及其他电子设备上分享的照片、音频、文本等数据。当前这种模式为我们的未来展现了前所未有的愿景:比如追踪流感疫情蔓延,实时监控道路交通,处理紧急自然灾害等。对人们而言,想要利用这些庞大的数据,首先必须要了解它们,而在此之前我们需要一种快捷有效自动的方式对数据进行分类。

其中一种最为常用的系统,是一系列称之为簇分析的统计技术,这种技术能依据数据的“相似性”进行数据分组。来自意大利国际高等研究院(SISSA)的两位研究者基于简单且强大的原理设计了一种簇分析方法,被证明可以非常有效地解决一些大数据分析中遇到的主要典型问题。

数据集合可以视为多维空间的云数据点。这些点呈现不同分配方式:或稀疏地分布在一个区域,或密集地分布在另外一个区域。簇分析就是用来有效地鉴别密集型区域,基于基本的准则将数据分为一定数量的重要子集合,每个子集合对应一种分类。

“以一个面部图像数据库为例,”SISSA统计与生物物理系教授Alessandro Laio说,“数据库可能包含同一个人的多张照片,簇分析可以用来归类同一人的所有照片。这种类型的分析可用自动脸部识别系统来完成。”

“我们试着设计一种较现有方法更为有效的算法,来解决簇分析中典型的问题。”Laio继续补充说。

“我们的方法基于一种新的鉴定簇中心,比如子集合,”另一位研究者Alex Rodriguez解释道,“试想这样的情形,在无法访问地图中,却不得不鉴定全球所有的城市时,这无疑是一个艰巨的任务。”Rodriguez进一步解释道,“因此我们在做一种探索式的识别,尝试寻找一条简单的规则或是一种捷径来达成目标。”

“为了确定一个地方是否达到城市级别规模,我们可以让当地居民计数自己的‘邻居’,换句话说,他房子的100米内住了多少人。一旦得到这个数字,我们继续去确认每一个居民,他们身边最近的拥有最多邻居数的居民。借助这两组数据结果交叉的部分,就可以推断每个人所在居住区域人口的稠密程度,以及拥有邻居数最多的两家间距。就全球人口而言,通过自动交叉检测这些数据,我们能识别代表簇状中心的个体,这些个体就是不同的城市。” Laio解释道。

“我们的算法能够精确地完成此类计算,也适用于其他场景,”Rodriguez进一步补充说,此算法表现相当优异。Rodriguez对此有着深刻理解:“借用面部数据档案Olivetti Face数据库,我们测试了自己的数学模型,并获得了满意的结果。此系统能够正确地识别大部分个体,从不产生假阳性结果,这意味着在某些情况下,它可能无法识别事物,但绝不会混淆一个个体与另一个个体。与类似的方法相比,我们的算法能够有效地剔除异类,要知道这些异类的数据点与其他数据存在较大差异是会损毁分析结果的。”

以上是小编为大家分享的关于大数据的新算法:简化数据分类的相关内容,更多信息可以关注环球青藤分享更多干货

❺ 大数据十大经典算法之k-means

大数据十大经典算法之k-means
k均值算法基本思想:
K均值算法是基于质心的技术。它以K为输入参数,把n个对象集合分为k个簇,使得簇内的相似度高,簇间的相似度低。
处理流程:
1、为每个聚类确定一个初始聚类中心,这样就有k个初始聚类中心;
2、将样本按照最小距离原则分配到最邻近聚类
3、使用每个聚类中的样本均值作为新的聚类中心
4、重复步骤2直到聚类中心不再变化
5、结束,得到K个聚类
划分聚类方法对数据集进行聚类时的要点:
1、选定某种距离作为数据样本间的相似性度量,通常选择欧氏距离。
2、选择平价聚类性能的准则函数
用误差平方和准则函数来评价聚类性能。
3、相似度的计算分局一个簇中对象的平均值来进行
K均值算法的优点:
如果变量很大,K均值比层次聚类的计算速度较快(如果K很小);
与层次聚类相比,K均值可以得到更紧密的簇,尤其是对于球状簇;
对于大数据集,是可伸缩和高效率的;
算法尝试找出使平方误差函数值最小的k个划分。当结果簇是密集的,而簇与簇之间区别明显的时候,效果较好。
K均值算法缺点:
最后结果受初始值的影响。解决办法是多次尝试取不同的初始值。
可能发生距离簇中心m最近的样本集为空的情况,因此m得不到更新。这是一个必须处理的问题,但我们忽略该问题。
不适合发现非凸面形状的簇,并对噪声和离群点数据较敏感,因为少量的这类数据能够对均值产生较大的影响。
K均值算法的改进:
样本预处理。计算样本对象量量之间的距离,筛掉与其他所有样本那的距离和最大的m个对象。
初始聚类中心的选择。选用簇中位置最靠近中心的对象,这样可以避免孤立点的影响。
K均值算法的变种:
K众数(k-modes)算法,针对分类属性的度量和更新质心的问题而改进。
EM(期望最大化)算法
k-prototype算法
这种算法不适合处理离散型属性,但是对于连续型具有较好的聚类效果。
k均值算法用途:
图像分割;
衡量足球队的水平;
下面给出代码:
#include <iostream>
#include <vector>
//auther archersc
//JLU
namespace CS_LIB
{
using namespace std;
class Kmean
{
public:
//输入格式
//数据数量N 维度D
//以下N行,每行D个数据
istream& loadData(istream& in);
//输出格式
//聚类的数量CN
//中心维度CD
//CN行,每行CD个数据
//数据数量DN
//数据维度DD
//以下DN组,每组的第一行两个数值DB, DDis
//第二行DD个数值
//DB表示改数据属于一类,DDis表示距离改类的中心的距离
ostream& saveData(ostream& out);
//设置中心的数量
void setCenterCount(const size_t count);
size_t getCenterCount() const;
//times最大迭代次数, maxE ,E(t)表示第t次迭代后的平方误差和,当|E(t+1) - E(t)| < maxE时终止
void clustering(size_t times, double maxE);

private:
double calDistance(vector<double>& v1, vector<double>& v2);

private:
vector< vector<double> > m_Data;
vector< vector<double> > m_Center;
vector<double> m_Distance;
vector<size_t> m_DataBelong;
vector<size_t> m_DataBelongCount;
};
}
#include "kmean.h"

#include <ctime>
#include <cmath>
#include <cstdlib>
//auther archersc
//JLU

namespace CS_LIB
{
template<class T>
void swap(T& a, T& b)
{
T c = a;
a = b;
b = c;
}

istream& Kmean::loadData(istream& in)
{
if (!in){
cout << "input error" << endl;
return in;
}
size_t dCount, dDim;
in >> dCount >> dDim;
m_Data.resize(dCount);
m_DataBelong.resize(dCount);
m_Distance.resize(dCount);
for (size_t i = 0; i < dCount; ++i){
m_Data[i].resize(dDim);
for (size_t j = 0; j < dDim; ++j){
in >> m_Data[i][j];
}
}
return in;
}
ostream& Kmean::saveData(ostream& out)
{
if (!out){
cout << "output error" << endl;
return out;
}
out << m_Center.size();
if (m_Center.size() > 0)
out << << m_Center[0].size();
else
out << << 0;
out << endl << endl;
for (size_t i = 0; i < m_Center.size(); ++i){
for (size_t j = 0; j < m_Center[i].size(); ++j){
out << m_Center[i][j] << ;
}
out << endl;
}
out << endl;
out << m_Data.size();
if (m_Data.size() > 0)
out << << m_Data[0].size();
else
out << << 0;
out << endl << endl;
for (size_t i = 0; i < m_Data.size(); ++i){
out << m_DataBelong[i] << << m_Distance[i] << endl;
for (size_t j = 0; j < m_Data[i].size(); ++j){
out << m_Data[i][j] << ;
}
out << endl << endl;
}
return out;
}
void Kmean::setCenterCount(const size_t count)
{
m_Center.resize(count);
m_DataBelongCount.resize(count);
}
size_t Kmean::getCenterCount() const
{
return m_Center.size();
}
void Kmean::clustering(size_t times, double maxE)
{
srand((unsigned int)time(NULL));
//随机从m_Data中选取m_Center.size()个不同的样本点作为初始中心。
size_t *pos = new size_t[m_Data.size()];
size_t i, j, t;
for (i = 0; i < m_Data.size(); ++i){
pos[i] = i;
}
for (i = 0; i < (m_Data.size() << 1); ++i){
size_t s1 = rand() % m_Data.size();
size_t s2 = rand() % m_Data.size();
swap(pos[s1], pos[s2]);
}
for (i = 0; i < m_Center.size(); ++i){
m_Center[i].resize(m_Data[pos[i]].size());
for (j = 0; j < m_Data[pos[i]].size(); ++j){
m_Center[i][j] = m_Data[pos[i]][j];
}
}
delete []pos;
double currE, lastE;
for (t = 0; t < times; ++t){
for (i = 0; i < m_Distance.size(); ++i)
m_Distance[i] = LONG_MAX;
for (i = 0; i < m_DataBelongCount.size(); ++i)
m_DataBelongCount[i] = 0;
currE = 0.0;
for (i = 0; i < m_Data.size(); ++i){
for (j = 0; j < m_Center.size(); ++j){
double dis = calDistance(m_Data[i], m_Center[j]);
if (dis < m_Distance[i]){
m_Distance[i] = dis;
m_DataBelong[i] = j;
}
}
currE += m_Distance[i];
m_DataBelongCount[m_DataBelong[i]]++;
}
cout << currE << endl;
if (t == 0 || fabs(currE - lastE) > maxE)
lastE = currE;
else
break;
for (i = 0; i < m_Center.size(); ++i){
for (j = 0; j < m_Center[i].size(); ++j)
m_Center[i][j] = 0.0;

}
for (i = 0; i < m_DataBelong.size(); ++i){
for (j = 0; j < m_Data[i].size(); ++j){
m_Center[m_DataBelong[i]][j] += m_Data[i][j] / m_DataBelongCount[m_DataBelong[i]];
}
}
}
}
double Kmean::calDistance(vector<double>& v1, vector<double>& v2)
{
double result = 0.0;
for (size_t i = 0; i < v1.size(); ++i){
result += (v1[i] - v2[i]) * (v1[i] - v2[i]);
}
return pow(result, 1.0 / v1.size());
//return sqrt(result);
}
}
#include <iostream>
#include <fstream>
#include "kmean.h"
using namespace std;
using namespace CS_LIB;

int main()
{
ifstream in("in.txt");
ofstream out("out.txt");
Kmean kmean;
kmean.loadData(in);
kmean.setCenterCount(4);
kmean.clustering(1000, 0.000001);
kmean.saveData(out);

return 0;
}

❻ 大数据分析的高级分析算法

众所周知,大数据分析的高级分析算法过程为下游流程提供了更精确,价值更高的数据,这对于公司真正利用其数据的价值并实现其所需的结果至关重要。下面是小编整理的一些高级分析计划中使用的一些最受欢迎的算法。每种方法都有优缺点,可以有效地利用它来产生业务价值的方式也不同。实施这些算法的最终目标是进一步优化数据,使结果信息可以应用于业务决策。

❼ 大数据算法 的原理是什么 是谁发明的 是怎么发明的

大数据是一个很广的概念
并没有大数据算法这种东西
大数据是指数据量激增以后面临的一系列难题和场景
具体到实际应用 那就要具体看了
你可能想问 原来一个算法 在大数据场景下 变成什么样了, 其实这是分布式算法的问题,很多时候都不是某个人发明 而是工程问题

❽ 大数据常用算法有哪些

made it," sai

热点内容
最新款的电脑高配置是什么样的 发布:2025-01-12 01:44:08 浏览:822
编程手舞蹈 发布:2025-01-12 01:36:18 浏览:958
阿里云服务器要备案吗 发布:2025-01-12 01:36:06 浏览:93
数据库应用与信息管理 发布:2025-01-12 01:26:06 浏览:269
esxi管理存储服务器 发布:2025-01-12 01:25:59 浏览:767
在乌班图搭建web服务器 发布:2025-01-12 01:25:24 浏览:390
浙江省开票软件升级版服务器地址 发布:2025-01-12 01:15:57 浏览:203
苹果电脑怎么进入电脑服务器 发布:2025-01-12 01:08:49 浏览:731
安卓平板怎么设置隔空刷抖音 发布:2025-01-12 01:08:12 浏览:392
手机设备存储是什么 发布:2025-01-12 01:03:45 浏览:906