当前位置:首页 » 操作系统 » 粒子群算法

粒子群算法

发布时间: 2022-01-30 10:18:20

A. 粒子群算法的粒子速度控制

速度可以控制为对应变量取值范围的10%,对于超出边界的粒子直接把其位置设置到边界上即可,也可以设置这些超出边界的粒子速度反向使其在下一迭代过程立即回答取值范围内,就是不设置反向经过几轮迭代也会把它拉回来的。

B. 粒子群算法和离散粒子群算法有什么不同主要差别体现在哪里

一般就是在跟新粒子位置后,对粒子进行离散点处理。
比如:
你的粒子的离散点是0到9的整数。
那么对每个粒子更新位置后,比如是在(0,1)范围内的随机数。那么就(0,0.1)范围令其值为0;(0.1,0.2)范围令其值为1;............(0.9.1)范围令其值为9。
当然初始位置值也需要这样处理。

C. 粒子群算法的优缺点

优点:PSO同遗传算法类似,是一种基于迭代的优化算法。系统初始化为一组随机解,通过迭代搜寻最优值。同遗传算法比较,PSO的优势在于简单容易实现,并且没有许多参数需要调整。

缺点:在某些问题上性能并不是特别好。网络权重的编码而且遗传算子的选择有时比较麻烦。最近已经有一些利用PSO来代替反向传播算法来训练神经网络的论文。

(3)粒子群算法扩展阅读:

注意事项:

基础粒子群算法步骤较为简单。粒子群优化算法是由一组粒子在搜索空间中运动,受其自身的最佳过去位置pbest和整个群或近邻的最佳过去位置gbest的影响。

对于有些改进算法,在速度更新公式最后一项会加入一个随机项,来平衡收敛速度与避免早熟。并且根据位置更新公式的特点,粒子群算法更适合求解连续优化问题。

D. 梯度下降法和粒子群优化算法的区别

粒子群(PSO)算法是近几年来最为流行的进化算法,最早是由Kenned和Eberhart于1995年提出.PSO 算法和其他进化算法类似,也采用“群体”和“进化”的概念,通过个体间的协作与竞争,实现复杂空间中最优解的搜索.PSO 先生成初始种群,即在可行解空间中随机初始化一群粒子,每个粒子都为优化问题的一个可行解,并由目标函数为之确定一个适应值(fitness value).PSO 不像其他进化算法那样对于个体使用进化算子,而是将每个个体看作是在n 维搜索空间中的一个没有体积和重量的粒子,每个粒子将在解空间中运动,并由一个速度决定其方向和距离.通常粒子将追随当前的最优粒子而运动,并经逐代搜索最后得到最优解.在每一代中,粒子将跟踪两个极值,一为粒子本身迄今找到的最优解 pbest ,另一为全种群迄今找到的最优解 gbest.由于认识到 PSO 在函数优化等领域所蕴含的广阔的应用前景,在 Kenned 和 Eberhart 之后很多学者都进行了这方面的研究.目前已提出了多种 PSO改进算法,并广泛应用到许多领域。

E. 什么是粒子群算法

粒子群算法介绍(摘自http://blog.sina.com.cn/newtech)
优化问题是工业设计中经常遇到的问题,许多问题最后都可以归结为优化问题. 为了解决各种各样的优化问题,人们提出了许多优化算法,比较着名的有爬山法、遗传算法等.优化问题有两个主要问题:一是要求寻找全局最小点,二是要求有较高的收敛速度. 爬山法精度较高,但是易于陷入局部极小. 遗传算法属于进化算法( Evolutionary Algorithms) 的一种,它通过模仿自然界的选择与遗传的机理来寻找最优解. 遗传算法有三个基本算子:选择、交叉和变异. 但是遗传算法的编程实现比较复杂,首先需要对问题进行编码,找到最优解之后还需要对问题进行解码,另外三个算子的实现也有许多参数,如交叉率和变异率,并且这些参数的选择严重影响解的品质,而目前这些参数的选择大部分是依靠经验.1995 年Eberhart 博士和kennedy 博士提出了一种新的算法;粒子群优化(Partical Swarm Optimization -PSO) 算法 . 这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性.

粒子群优化(Partical Swarm Optimization - PSO) 算法是近年来发展起来的一种新的进化算法( Evolu2tionary Algorithm - EA) .PSO 算法属于进化算法的一种,和遗传算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质. 但是它比遗传算法规则更为简单,它没有遗传算法的“交叉”(Crossover) 和“变异”(Mutation) 操作. 它通过追随当前搜索到的最优值来寻找全局最优 .

粒子群算法

1. 引言

粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),有Eberhart博士和kennedy博士发明。源于对鸟群捕食的行为研究

PSO同遗传算法类似,是一种基于叠代的优化工具。系统初始化为一组随机解,通过叠代搜寻最优值。但是并没有遗传算法用的交叉(crossover)以及变异(mutation)。而是粒子在解空间追随最优的粒子进行搜索。详细的步骤以后的章节介绍

同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域

2. 背景: 人工生命

"人工生命"是来研究具有某些生命基本特征的人工系统. 人工生命包括两方面的内容

1. 研究如何利用计算技术研究生物现象
2. 研究如何利用生物技术研究计算问题

我们现在关注的是第二部分的内容. 现在已经有很多源于生物现象的计算技巧. 例如, 人工神经网络是简化的大脑模型. 遗传算法是模拟基因进化过程的.

现在我们讨论另一种生物系统- 社会系统. 更确切的是, 在由简单个体组成的群落与环境以及个体之间的互动行为. 也可称做"群智能"(swarm intelligence). 这些模拟系统利用局部信息从而可能产生不可预测的群体行为

例如floys 和 boids, 他们都用来模拟鱼群和鸟群的运动规律, 主要用于计算机视觉和计算机辅助设计.

在计算智能(computational intelligence)领域有两种基于群智能的算法. 蚁群算法(ant colony optimization)和粒子群算法(particle swarm optimization). 前者是对蚂蚁群落食物采集过程的模拟. 已经成功运用在很多离散优化问题上.

粒子群优化算法(PSO) 也是起源对简单社会系统的模拟. 最初设想是模拟鸟群觅食的过程. 但后来发现PSO是一种很好的优化工具.

3. 算法介绍

如前所述,PSO模拟鸟群的捕食行为。设想这样一个场景:一群鸟在随机搜索食物。在这个区域里只有一块食物。所有的鸟都不知道食物在那里。但是他们知道当前的位置离食物还有多远。那么找到食物的最优策略是什么呢。最简单有效的就是搜寻目前离食物最近的鸟的周围区域。

PSO从这种模型中得到启示并用于解决优化问题。PSO中,每个优化问题的解都是搜索空间中的一只鸟。我们称之为“粒子”。所有的例子都有一个由被优化的函数决定的适应值(fitness value),每个粒子还有一个速度决定他们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索

PSO 初始化为一群随机粒子(随机解)。然后通过叠代找到最优解。在每一次叠代中,粒子通过跟踪两个"极值"来更新自己。第一个就是粒子本身所找到的最优解。这个解叫做个体极值pBest. 另一个极值是整个种群目前找到的最优解。这个极值是全局极值gBest。另外也可以不用整个种群而只是用其中一部分最为粒子的邻居,那么在所有邻居中的极值就是局部极值。

在找到这两个最优值时, 粒子根据如下的公式来更新自己的速度和新的位置

v[] = v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[]) (a)
present[] = persent[] + v[] (b)

v[] 是粒子的速度, persent[] 是当前粒子的位置. pbest[] and gbest[] 如前定义 rand () 是介于(0, 1)之间的随机数. c1, c2 是学习因子. 通常 c1 = c2 = 2.

程序的伪代码如下

For each particle
____Initialize particle
END

Do
____For each particle
________Calculate fitness value
________If the fitness value is better than the best fitness value (pBest) in history
____________set current value as the new pBest
____End

____Choose the particle with the best fitness value of all the particles as the gBest
____For each particle
________Calculate particle velocity according equation (a)
________Update particle position according equation (b)
____End
While maximum iterations or minimum error criteria is not attained

在每一维粒子的速度都会被限制在一个最大速度Vmax,如果某一维更新后的速度超过用户设定的Vmax,那么这一维的速度就被限定为Vmax

4. 遗传算法和 PSO 的比较

大多数演化计算技术都是用同样的过程
1. 种群随机初始化
2. 对种群内的每一个个体计算适应值(fitness value).适应值与最优解的距离直接有关
3. 种群根据适应值进行复制
4. 如果终止条件满足的话,就停止,否则转步骤2

从以上步骤,我们可以看到PSO和GA有很多共同之处。两者都随机初始化种群,而且都使用适应值来评价系统,而且都根据适应值来进行一定的随机搜索。两个系统都不是保证一定找到最优解

但是,PSO 没有遗传操作如交叉(crossover)和变异(mutation). 而是根据自己的速度来决定搜索。粒子还有一个重要的特点,就是有记忆。

与遗传算法比较, PSO 的信息共享机制是很不同的. 在遗传算法中,染色体(chromosomes) 互相共享信息,所以整个种群的移动是比较均匀的向最优区域移动. 在PSO中, 只有gBest (or lBest) 给出信息给其他的粒子,这是单向的信息流动. 整个搜索更新过程是跟随当前最优解的过程. 与遗传算法比较, 在大多数的情况下,所有的粒子可能更快的收敛于最优解

5. 人工神经网络 和 PSO

人工神经网络(ANN)是模拟大脑分析过程的简单数学模型,反向转播算法是最流行的神经网络训练算法。进来也有很多研究开始利用演化计算(evolutionary computation)技术来研究人工神经网络的各个方面。

演化计算可以用来研究神经网络的三个方面:网络连接权重,网络结构(网络拓扑结构,传递函数),网络学习算法。

不过大多数这方面的工作都集中在网络连接权重,和网络拓扑结构上。在GA中,网络权重和/或拓扑结构一般编码为染色体(Chromosome),适应函数(fitness function)的选择一般根据研究目的确定。例如在分类问题中,错误分类的比率可以用来作为适应值

演化计算的优势在于可以处理一些传统方法不能处理的例子例如不可导的节点传递函数或者没有梯度信息存在。但是缺点在于:在某些问题上性能并不是特别好。2. 网络权重的编码而且遗传算子的选择有时比较麻烦

最近已经有一些利用PSO来代替反向传播算法来训练神经网络的论文。研究表明PSO 是一种很有潜力的神经网络算法。PSO速度比较快而且可以得到比较好的结果。而且还没有遗传算法碰到的问题

这里用一个简单的例子说明PSO训练神经网络的过程。这个例子使用分类问题的基准函数(Benchmark function)IRIS数据集。(Iris 是一种鸢尾属植物) 在数据记录中,每组数据包含Iris花的四种属性:萼片长度,萼片宽度,花瓣长度,和花瓣宽度,三种不同的花各有50组数据. 这样总共有150组数据或模式。

我们用3层的神经网络来做分类。现在有四个输入和三个输出。所以神经网络的输入层有4个节点,输出层有3个节点我们也可以动态调节隐含层节点的数目,不过这里我们假定隐含层有6个节点。我们也可以训练神经网络中其他的参数。不过这里我们只是来确定网络权重。粒子就表示神经网络的一组权重,应该是4*6+6*3=42个参数。权重的范围设定为[-100,100] (这只是一个例子,在实际情况中可能需要试验调整).在完成编码以后,我们需要确定适应函数。对于分类问题,我们把所有的数据送入神经网络,网络的权重有粒子的参数决定。然后记录所有的错误分类的数目作为那个粒子的适应值。现在我们就利用PSO来训练神经网络来获得尽可能低的错误分类数目。PSO本身并没有很多的参数需要调整。所以在实验中只需要调整隐含层的节点数目和权重的范围以取得较好的分类效果。

6. PSO的参数设置

从上面的例子我们可以看到应用PSO解决优化问题的过程中有两个重要的步骤: 问题解的编码和适应度函数
PSO的一个优势就是采用实数编码, 不需要像遗传算法一样是二进制编码(或者采用针对实数的遗传操作.例如对于问题 f(x) = x1^2 + x2^2+x3^2 求解, 粒子可以直接编码为 (x1, x2, x3), 而适应度函数就是f(x). 接着我们就可以利用前面的过程去寻优.这个寻优过程是一个叠代过程, 中止条件一般为设置为达到最大循环数或者最小错误

PSO中并没有许多需要调节的参数,下面列出了这些参数以及经验设置

粒子数: 一般取 20 – 40. 其实对于大部分的问题10个粒子已经足够可以取得好的结果, 不过对于比较难的问题或者特定类别的问题, 粒子数可以取到100 或 200

粒子的长度: 这是由优化问题决定, 就是问题解的长度

粒子的范围: 由优化问题决定,每一维可是设定不同的范围

Vmax: 最大速度,决定粒子在一个循环中最大的移动距离,通常设定为粒子的范围宽度,例如上面的例子里,粒子 (x1, x2, x3) x1 属于 [-10, 10], 那么 Vmax 的大小就是 20

学习因子: c1 和 c2 通常等于 2. 不过在文献中也有其他的取值. 但是一般 c1 等于 c2 并且范围在0和4之间

中止条件: 最大循环数以及最小错误要求. 例如, 在上面的神经网络训练例子中, 最小错误可以设定为1个错误分类, 最大循环设定为2000, 这个中止条件由具体的问题确定.

全局PSO和局部PSO: 我们介绍了两种版本的粒子群优化算法: 全局版和局部版. 前者速度快不过有时会陷入局部最优. 后者收敛速度慢一点不过很难陷入局部最优. 在实际应用中, 可以先用全局PSO找到大致的结果,再有局部PSO进行搜索.

另外的一个参数是惯性权重, 由Shi 和Eberhart提出, 有兴趣的可以参考他们1998年的论文(题目: A modified particle swarm optimizer)

F. 我在研究粒子群算法,请问什么叫粒子的适应度值啊

粒子的适应度就是指目标函数的值。一般来说,目标函数的选择由具体问题来决定,假如是求最大值问题,适应度就是函数的大小,适应度当然越大越好。如果是TSP问题,路径的距离就是粒子的适应度。

G. 什么是粒子群算法

粒子群算法,也称粒子群优化算法(Partical Swarm Optimization),缩写为 PSO, 是近年来发展起来的一种新的进化算法((Evolu2tionary Algorithm - EA)。PSO 算法属于进化算法的一种,和遗传算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的“交叉”(Crossover) 和“变异”(Mutation) 操作,它通过追随当前搜索到的最优值来寻找全局最优。这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性。设想这样一个场景:一群鸟在随机搜索食物。在这个区域里只有一块食物。所有的鸟都不知道食物在那里。但是他们知道当前的位置离食物还有多远。那么找到食物的最优策略是什么呢。最简单有效的就是搜寻目前离食物最近的鸟的周围区域。 PSO从这种模型中得到启示并用于解决优化问题。PSO中,每个优化问题的解都是搜索空间中的一只鸟。我们称之为“粒子”。所有的粒子都有一个由被优化的函数决定的适应值(fitness value),每个粒子还有一个速度决定他们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索。 PSO 初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。在每一次迭代中,粒子通过跟踪两个"极值"来更新自己。第一个就是粒子本身所找到的最优解,这个解叫做个体极值pBest。另一个极值是整个种群目前找到的最优解,这个极值是全局极值gBest。另外也可以不用整个种群而只是用其中一部分作为粒子的邻居,那么在所有邻居中的极值就是局部极值。 粒子公式 在找到这两个最优值时,粒子根据如下的公式来更新自己的速度和新的位置: v[] = w * v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[]) (a) present[] = persent[] + v[] (b) v[] 是粒子的速度, w是惯性权重,persent[] 是当前粒子的位置. pbest[] and gbest[] 如前定义 rand () 是介于(0, 1)之间的随机数. c1, c2 是学习因子. 通常 c1 = c2 = 2. 程序的伪代码如下 For each particle ____Initialize particle END Do ____For each particle ________Calculate fitness value ________If the fitness value is better than the best fitness value (pBest) in history ____________set current value as the new pBest ____End ____Choose the particle with the best fitness value of all the particles as the gBest ____For each particle ________Calculate particle velocity according equation (a) ________Update particle position according equation (b) ____End While maximum iterations or minimum error criteria is not attained 在每一维粒子的速度都会被限制在一个最大速度Vmax,如果某一维更新后的速度超过用户设定的Vmax,那么这一维的速度就被限定为Vmax

H. 离散粒子群优化算法的背景和意义是什么

定义粒子群优化算法(Particle Swarm optimization,PSO)又翻译为粒子群算法、微粒群算法、或微粒群优化算法。是通过模拟鸟群觅食行为而发展起来的一种基于群体协作的随机搜索算法。通常认为它是群集智能 (Swarm intelligence, SI) 的一种。它可以被纳入多主体优化系统 (Multiagent Optimization System, MAOS). 粒子群优化算法是由Eberhart博士和kennedy博士发明。PSO模拟鸟群的捕食行为PSO模拟鸟群的捕食行为。一群鸟在随机搜索食物,在这个区域里只有一块食物。所有的鸟都不知道食物在那里。但是他们知道当前的位置离食物还有多远。那么找到食物的最优策略是什么呢。最简单有效的就是搜寻目前离食物最近的鸟的周围区域。从模型中得到的启示PSO从这种模型中得到启示并用于解决优化问题。PSO中,每个优化问题的解都是搜索空间中的一只鸟。我们称之为“粒子”。所有的粒子都有一个由被优化的函数决定的适应值(fitnessvalue),每个粒子还有一个速度决定他们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索。PSO初始化PSO初始化为一群随机粒子(随机解),然后通过叠代找到最优解,在每一次叠代中,粒子通过跟踪两个“极值”来更新自己。第一个就是粒子本身所找到的最优解,这个解叫做个体极值pBest,另一个极值是整个种群目前找到的最优解,这个极值是全局极值gBest。另外也可以不用整个种群而只是用其中一部分最优粒子的邻居,那么在所有邻居中的极值就是局部极值。编辑本段算法介绍在找到这两个最优值时, 粒子根据如下的公式来更新自己的速度和新的位置v[] = v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[]) (a)present[] = persent[] + v[] (b)v[] 是粒子的速度, persent[] 是当前粒子的位置. pbest[] and gbest[] 如前定义 rand () 是介于(0, 1)之间的随机数. c1, c2 是学习因子. 通常 c1 = c2 = 2.程序的伪代码如下For each particle____Initialize particleENDDo____For each particle________Calculate fitness value________If the fitness value is better than the best fitness value (pBest) in history____________set current value as the new pBest____End____Choose the particle with the best fitness value of all the particles as the gBest____For each particle________Calculate particle velocity according equation (a)________Update particle position according equation (b)____EndWhile maximum iterations or minimum error criteria is not attained在每一维粒子的速度都会被限制在一个最大速度Vmax,如果某一维更新后的速度超过用户设定的Vmax,那么这一维的速度就被限定为Vmax。编辑本段遗传算法和PSO的比较共同点①种群随机初始化。②对种群内的每一个个体计算适应值(fitness value)。适应值与最优解的距离直接有关。③种群根据适应值进行复制 。④如果终止条件满足的话,就停止,否则转步骤② 。从以上步骤,我们可以看到PSO和遗传算法有很多共同之处。两者都随机初始化种群,而且都使用适应值来评价系统,而且都根据适应值来进行一定的随机搜索。两个系统都不是保证一定找到最优解。但是,PSO没有遗传操作如交叉(crossover)和变异(mutation),而是根据自己的速度来决定搜索。粒子还有一个重要的特点,就是有记忆。不同点与遗传算法比较,PSO的信息共享机制是很不同的。在遗传算法中,染色体(chromosomes)互相共享信息,所以整个种群的移动是比较均匀的向最优区域移动。在PSO中, 只有gBest (orlBest) 给出信息给其他的粒子, 这是单向的信息流动。整个搜索更新过程是跟随当前最优解的过程。与遗传算法比较, 在大多数的情况下,所有的粒子可能更快的收敛于最优解。编辑本段人工神经网络和PSO定义人工神经网络(ANN)是模拟大脑分析过程的简单数学模型,反向转播算法是最流行的神经网络训练算法。进来也有很多研究开始利用演化计算(evolutionary computation)技术来研究人工神经网络的各个方面。研究方面演化计算可以用来研究神经网络的三个方面:网络连接权重,网络结构(网络拓扑结构,传递函数),网络学习算法。不过大多数这方面的工作都集中在网络连接权重,和网络拓扑结构上。在GA中,网络权重和/或拓扑结构一般编码为染色体(Chromosome),适应函数(fitness function)的选择一般根据研究目的确定。例如在分类问题中,错误分类的比率可以用来作为适应值优缺点演化计算的优势在于可以处理一些传统方法不能处理的例子例如不可导的节点传递函数或者没有梯度信息存在。但是缺点在于:1、在某些问题上性能并不是特别好。2. 网络权重的编码而且遗传算子的选择有时比较麻烦。最近已经有一些利用PSO来代替反向传播算法来训练神经网络的论文。研究表明PSO 是一种很有潜力的神经网络算法。PSO速度比较快而且可以得到比较好的结果。而且还没有遗传算法碰到的问题。举例这里用一个简单的例子说明PSO训练神经网络的过程。这个例子使用分类问题的基准函数 (Benchmark function)IRIS数据集。(Iris 是一种鸢尾属植物) 在数据记录中,每组数据包含Iris花的四种属性:萼片长度,萼片宽度,花瓣长度,和花瓣宽度,三种不同的花各有50组数据. 这样总共有150组数据或模式。我们用3层的神经网络来做分类。现在有四个输入和三个输出。所以神经网络的输入层有4个节点,输出层有3个节点我们也可以动态调节隐含层节点的数目,不过这里我们假定隐含层有6个节点。我们也可以训练神经网络中其他的参数。不过这里我们只是来确定网络权重。粒子就表示神经网络的一组权重,应该是4*6+6*3=42个参数。权重的范围设定为[-100,100] (这只是一个例子,在实际情况中可能需要试验调整).在完成编码以后,我们需要确定适应函数。对于分类问题,我们把所有的数据送入神经网络,网络的权重有粒子的参数决定。然后记录所有的错误分类的数目作为那个粒子的适应值。现在我们就利用PSO来训练神经网络来获得尽可能低的错误分类数目。PSO本身并没有很多的参数需要调整。所以在实验中只需要调整隐含层的节点数目和权重的范围以取得较好的分类效果。

I. 粒子群算法适用于预测吗

粒子群算法大多是适用于算法的优化、寻优,预测可以选用BP/SVR/GRNN等这样的智能算法啊

热点内容
扫无线密码在哪里扫 发布:2024-11-10 12:54:37 浏览:80
荣威ei6顶配配置有哪些 发布:2024-11-10 12:46:42 浏览:84
布密码箱多少 发布:2024-11-10 12:31:20 浏览:615
实时数据存储 发布:2024-11-10 12:23:06 浏览:38
android自动提示 发布:2024-11-10 12:22:23 浏览:45
python去掉字符串的换行符 发布:2024-11-10 12:21:15 浏览:381
python正则表达式语法 发布:2024-11-10 12:13:04 浏览:342
云服务器能做什么赚钱 发布:2024-11-10 11:46:50 浏览:931
我的世界手机版新手专用服务器 发布:2024-11-10 11:46:09 浏览:908
编程消防车 发布:2024-11-10 11:41:47 浏览:576