当前位置:首页 » 操作系统 » 启发式算法

启发式算法

发布时间: 2022-01-28 23:44:43

A. 什么是启发式算法(转)

它并不告诉你该如何直接从A点到达B点,它甚至可能连A点和B点在哪里都不知道。实际上,启发式方法是穿着小丑儿外套的算法:它的结果不太好预测,也更有趣,但不会给你什么30 天无效退款的保证。 驾驶汽车到达某人的家,写成算法是这样的:沿167 号高速公路往南行至Puyallup;从SouthHillMall出口出来后往山上开4.5 英里;在一个杂物店旁边的红绿灯路口右转,接着在第一个路口左转;从左边褐色大房子的车道进去,就是NorthCedar路714号。 用启发式方法来描述则可能是这样:找出上一次我们寄给你的信,照着信上面的寄出地址开车到这个镇;到了之后你问一下我们的房子在哪里。这里每个人都认识我们——肯定有人会很愿意帮助你的;如果你找不到人,那就找个公共电话亭给我们打电话,我们会出来接你。 从上面的启发式算法的解释可以看出,启发式算法的难点是建立符合实际问题的一系列启发式规则。

B. 经典的启发式算法包括哪些

蚁群,模拟退火,禁忌搜索,人工神经网络等。。。
推荐教材《现代优化计算方法》第二版 邢文训,谢金星 清华大学出版社
另一本补充,《最优化理论与方法》 黄平 清华大学出版社

第一本教材网上有电子版,你自己搜下

C. 谁能详细介绍一下启发式算法的原理或者方法

整数规划一般是不容易得到最优解的。启发式算法可以在合理的计算时间内得到较解。局域搜索启发式算法应用广泛。局域搜索的一般步骤如下: 从一个初始可行解出发 找出相邻的可行解 从相邻的可行解中找出更好的可行解 地,局域搜索启发式算法会得到一个局部最优解,而这个局部最优解有时就是全局。算法的好与坏都决定于步骤 3。 1.1 模拟退火方法 相邻元素是随机选择的,选上的概率为pn , pn= 1∑。移动的决策取n∈ N标成本和退火概率: c(y)?c(x)??py(x)?eTc(y)φ c(x) pxy= ? ?py(x)?Ct温度梯度是根据一定的规则选择的,比如T (t) =T t() = Calog t或, a π 1。

D. 启发式算法的新算法

如何找到一个分叉率较少又通用的合理启发式算法,已被人工智能社群深入探究过。 他们使用几种常见技术:
部分问题的解答的代价通常可以评估解决整个问题的代价,通常很合理。例如一个10-puzzle拼盘,解题的代价应该与将1到5的方块移回正确位置的代价差不多。通常解题者会先建立一个储存部份问题所需代价的模式数据库(pattern database)以评估问题。 解决较易的近似问题通常可以拿来合理评估原先问题。例如曼哈顿距离是一个简单版本的n-puzzle问题,因为我们假设可以独立移动一个方块到我们想要的位置,而暂不考虑会移到其他方块的问题。 给我们一群合理的启发式函式h1(n),h2(n),...,hi(n),而函式h(n) = max{h1(n),h2(n),...,hi(n)}则是个可预测这些函式的启发式函式。 一个在1993年由A.E. Prieditis写出的程式ABSOLVER就运用了这些技术,这程式可以自动为问题产生启发式算法。ABSOLVER为8-puzzle产生的启发式算法优于任何先前存在的!而且它也发现了第一个有用的解魔术方块的启发式程式。

E. 遗传算法是确定性算法还是启发式算法

启发式算法实际上就是针对具体问题,加入了人的经验的最优求解算法。不同的问题,有不同的启发规则。
遗传算法、粒子群算法这一类算法某种程度上可以归为启发式算法。因不同的问题,实现遗传算法和粒子群算法的方法与途径也会有所区别。

F. 什么是启发式算法

大自然是神奇的,它造就了很多巧妙的手段和运行机制。受大自然的启发,人们从大自然的运行规律中找到了许多解决实际问题的方法。对于那些受大自然的运行规律或者面向具体问题的经验、规则启发出来的方法,人们常常称之为启发式算法(Heuristic Algorithm)。现在的启发式算法也不是全部来自然的规律,也有来自人类积累的工作经验。 驾驶汽车到达某人的家,写成算法是这样的:沿167 号高速公路往南行至阳谷;从阳谷高速出口出来后往山上开4.5 英里;在一个杂物店旁边的红绿灯路口右转,接着在第一个路口左转;从左边褐色大房子的车道进去,就是某人的家。 启发式方法来描述则可能是这样:找出上一次我们寄给你的信,照着信上面的寄出地址开车到这个镇;到了之后你问一下我们的房子在哪里。这里每个人都认识我们——肯定有人会很愿意帮助你的;如果你找不到人,那就找个公共电话亭给我们打电话,我们会出来接你。

G. 启发式算法的介绍

启发式算法(heuristic algorithm)是相对于最优化算法提出的。一个问题的最优算法求得该问题每个实例的最优解。启发式算法可以这样定义:一个基于直观或经验构造的算法,在可接受的花费(指计算时间和空间)下给出待解决组合优化问题每一个实例的一个可行解,该可行解与最优解的偏离程度一般不能被预计。

H. 遗传算法和启发式算法是什么关系

都是为了解决NP问题这种需要大规模运算的算法,原理不一样,运算量也不一样的。

热点内容
网络登录服务器需要获取什么信息 发布:2025-01-12 12:17:32 浏览:890
mac终端打开文件夹 发布:2025-01-12 12:17:31 浏览:295
第一次安装如何设置mysql密码 发布:2025-01-12 12:09:02 浏览:280
如何删除微信服务器上收藏 发布:2025-01-12 12:08:20 浏览:102
吃鸡游戏安卓区转苹果区怎么转 发布:2025-01-12 11:34:00 浏览:880
网页版c语言 发布:2025-01-12 11:21:01 浏览:864
安卓怎么更改排位常用英雄 发布:2025-01-12 11:10:33 浏览:561
拆迁的100万如何配置 发布:2025-01-12 11:08:52 浏览:575
如何配置ph值为次氯酸钠的ph值 发布:2025-01-12 11:08:52 浏览:437
pythonarraynumpy 发布:2025-01-12 11:01:47 浏览:293