当前位置:首页 » 操作系统 » svm算法

svm算法

发布时间: 2022-01-27 17:42:26

‘壹’ svm算法训练样本尺寸必须一致么

参与训练的特征维度必须一致,所以如果你训练样本不一致,必须进行尺度归一化

‘贰’ 有没有用c或c++实现svm算法

林智仁 的libsvm 就是C实现的SVM算法代码,回答不能带链接,你去搜一下libsvm就能找到了.你可以找到他的主页,上面还会有算法的具体介绍,和libsvm的使用. 这个估计是使用最广泛的求解svm的工具包. 里面的代码都是可以看的.
理论的话,july写的一篇文章很经典, 搜索 支持向量机通俗导论(理解SVM的三层境界) 就能找到.
另外看楼主是想学习人工智能算法的, 附加一个学习神经网络的网络, <神经网络之家> nnetinfo ,专讲神经网络的,还有相关视频.
都是本人学习过程了解到的干货, 望采纳.

‘叁’ svr算法和svm算法哪个好

1、支持向量机( SVM )是一种比较好的实现了结构风险最小化思想的方法。它的机器学习策略是结构风险最小化原则
为了最小化期望风险,应同时最小化经验风险和置信范围)

支持向量机方法的基本思想:

( 1
)它是专门针对有限样本情况的学习机器,实现的是结构风险最小化:在对给定的数据逼近的精度与逼近函数的复杂性之间寻求折衷,以期获得最好的推广能力;

( 2
)它最终解决的是一个凸二次规划问题,从理论上说,得到的将是全局最优解,解决了在神经网络方法中无法避免的局部极值问题;

( 3
)它将实际问题通过非线性变换转换到高维的特征空间,在高维空间中构造线性决策函数来实现原空间中的非线性决策函数,巧妙地解决了维数问题,并保证了有较好的推广能力,而且算法复杂度与样本维数无关。

目前, SVM
算法在模式识别、回归估计、概率密度函数估计等方面都有应用,且算法在效率与精度上已经超过传统的学习算法或与之不相上下。

对于经验风险R,可以采用不同的损失函数来描述,如e不敏感函数、Quadratic函数、Huber函数、Laplace函数等。

核函数一般有多项式核、高斯径向基核、指数径向基核、多隐层感知核、傅立叶级数核、样条核、 B
样条核等,虽然一些实验表明在分类中不同的核函数能够产生几乎同样的结果,但在回归中,不同的核函数往往对拟合结果有较大的影响

2、支持向量回归算法(svr)主要是通过升维后,在高维空间中构造线性决策函数来实现线性回归,用e不敏感函数时,其基础主要是 e
不敏感函数和核函数算法。

若将拟合的数学模型表达多维空间的某一曲线,则根据e 不敏感函数所得的结果,就是包括该曲线和训练点的“
e管道”。在所有样本点中,只有分布在“管壁”上的那一部分样本点决定管道的位置。这一部分训练样本称为“支持向量”。为适应训练样本集的非线性,传统的拟合方法通常是在线性方程后面加高阶项。此法诚然有效,但由此增加的可调参数未免增加了过拟合的风险。支持向量回归算法采用核函数解决这一矛盾。用核函数代替线性方程中的线性项可以使原来的线性算法“非线性化”,即能做非线性回归。与此同时,引进核函数达到了“升维”的目的,而增加的可调参数是过拟合依然能控制。

‘肆’ svm算法分类的样本对行列书有没有要求

数据仓库,数据库或者其它信息库中隐藏着许多可以为商业、科研等活动的决策提供所需要的知识。分类与预测是两种数据分析形式,它们可以用来抽取能够描述重要数据集合或预测未来数据趋势的模型。分类方法(Classification)用于预测数据对象的离散类别(Categorical Label);预测方法(Prediction )用于预测数据对象的连续取值。
分类技术在很多领域都有应用,例如可以通过客户分类构造一个分类模型来对银行贷款进行风险评估;当前的市场营销中很重要的一个特点是强调客户细分。客户类别分析的功能也在于此,采用数据挖掘中的分类技术,可以将客户分成不同的类别,比如呼叫中心设计时可以分为:呼叫频繁的客户、偶然大量呼叫的客户、稳定呼叫的客户、其他,帮助呼叫中心寻找出这些不同种类客户之间的特征,这样的分类模型可以让用户了解不同行为类别客户的分布特征;其他分类应用如文献检索和搜索引擎中的自动文本分类技术;安全领域有基于分类技术的入侵检测等等。机器学习、专家系统、统计学和神经网络等领域的研究人员已经提出了许多具体的分类预测方法。下面对分类流程作个简要描述:
训练:训练集——>特征选取——>训练——>分类器
分类:新样本——>特征选取——>分类——>判决
最初的数据挖掘分类应用大多都是在这些方法及基于内存基础上所构造的算法。目前数据挖掘方法都要求具有基于外存以处理大规模数据集合能力且具有可扩展能力。下面对几种主要的分类方法做个简要介绍:
(1)决策树
决策树归纳是经典的分类算法。它采用自顶向下递归的各个击破方式构造决策树。树的每一个结点上使用信息增益度量选择测试属性。可以从生成的决策树中提取规则。
(2) KNN法(K-Nearest Neighbor)
KNN法即K最近邻法,最初由Cover和Hart于1968年提出的,是一个理论上比较成熟的方法。该方法的思路非常简单直观:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。
KNN方法虽然从原理上也依赖于极限定理,但在类别决策时,只与极少量的相邻样本有关。因此,采用这种方法可以较好地避免样本的不平衡问题。另外,由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。
该方法的不足之处是计算量较大,因为对每一个待分类的文本都要计算它到全体已知样本的距离,才能求得它的K个最近邻点。目前常用的解决方法是事先对已知样本点进行剪辑,事先去除对分类作用不大的样本。另外还有一种Reverse KNN法,能降低KNN算法的计算复杂度,提高分类的效率。
该算法比较适用于样本容量比较大的类域的自动分类,而那些样本容量较小的类域采用这种算法比较容易产生误分。
(3) SVM法SVM法即支持向量机(Support Vector Machine)法,由Vapnik等人于1995年提出,具有相对优良的性能指标。该方法是建立在统计学习理论基础上的机器学习方法。通过学习算法,SVM可以自动寻找出那些对分类有较好区分能力的支持向量,由此构造出的分类器可以最大化类与类的间隔,因而有较好的适应能力和较高的分准率。该方法只需要由各类域的边界样本的类别来决定最后的分类结果。
支持向量机算法的目的在于寻找一个超平面H(d),该超平面可以将训练集中的数据分开,且与类域边界的沿垂直于该超平面方向的距离最大,故SVM法亦被称为最大边缘(maximum margin)算法。待分样本集中的大部分样本不是支持向量,移去或者减少这些样本对分类结果没有影响,SVM法对小样本情况下的自动分类有着较好的分类结果。
(4) VSM法VSM法即向量空间模型(Vector Space Model)法,由Salton等人于60年代末提出。这是最早也是最出名的信息检索方面的数学模型。其基本思想是将文档表示为加权的特征向量:D=D(T1,W1;T2,W2;…;Tn,Wn),然后通过计算文本相似度的方法来确定待分样本的类别。当文本被表示为空间向量模型的时候,文本的相似度就可以借助特征向量之间的内积来表示。
在实际应用中,VSM法一般事先依据语料库中的训练样本和分类体系建立类别向量空间。当需要对一篇待分样本进行分类的时候,只需要计算待分样本和每一个类别向量的相似度即内积,然后选取相似度最大的类别作为该待分样本所对应的类别。
由于VSM法中需要事先计算类别的空间向量,而该空间向量的建立又很大程度的依赖于该类别向量中所包含的特征项。根据研究发现,类别中所包含的非零特征项越多,其包含的每个特征项对于类别的表达能力越弱。因此,VSM法相对其他分类方法而言,更适合于专业文献的分类。
(5) Bayes法
Bayes法是一种在已知先验概率与类条件概率的情况下的模式分类方法,待分样本的分类结果取决于各类域中样本的全体。
设训练样本集分为M类,记为C={c1,…,ci,…cM},每类的先验概率为P(ci),i=1,2,…,M。当样本集非常大时,可以认为P(ci)=ci类样本数/总样本数。对于一个待分样本X,其归于cj类的类条件概率是P(X/ci),则根据Bayes定理,可得到cj类的后验概率P(ci/X):
P(ci/x)=P(x/ci)·P(ci)/P(x)(1)
若P(ci/X)=MaxjP(cj/X),i=1,2,…,M,j=1,2,…,M,则有x∈ci(2)
式(2)是最大后验概率判决准则,将式(1)代入式(2),则有:
若P(x/ci)P(ci)=Maxj〔P(x/cj)P(cj)〕,i=1,2,…,M,j=1,2,…,M,则x∈ci
这就是常用到的Bayes分类判决准则。经过长期的研究,Bayes分类方法在理论上论证得比较充分,在应用上也是非常广泛的。
Bayes方法的薄弱环节在于实际情况下,类别总体的概率分布和各类样本的概率分布函数(或密度函数)常常是不知道的。为了获得它们,就要求样本足够大。另外,Bayes法要求表达文本的主题词相互独立,这样的条件在实际文本中一般很难满足,因此该方法往往在效果上难以达到理论上的最大值。
神经网络分类算法的重点是构造阈值逻辑单元,一个值逻辑单元是一个对象,它可以输入一组加权系数的量,对它们进行求和,如果这个和达到或者超过了某个阈值,输出一个量。如有输入值X1, X2, , Xn 和它们的权系数:W1, W2, , Wn,求和计算出的 Xi*Wi ,产生了激发层 a = (X1 * W1)+(X2 * W2)++(Xi * Wi)++ (Xn * Wn),其中Xi 是各条记录出现频率或其他参数,Wi是实时特征评估模型中得到的权系数。神经网络是基于经验风险最小化原则的学习算法,有一些固有的缺陷,比如层数和神经元个数难以确定,容易陷入局部极小,还有过学习现象,这些本身的缺陷在SVM算法中可以得到很好的解决。

‘伍’ 如何改进SVM算法,最好是自己的改进方法,别引用那些前人改进的算法

楼主对于这种问题的答案完全可以上SCI了,知道答案的人都在写论文中,所以我可以给几个改进方向给你提示一下:
1 SVM是分类器对于它的准确性还有过拟合性都有很成熟的改进,所以采用数学方法来改进感觉很难了,但是它的应用很广泛 SVMRank貌似就是netflix电影推荐系统的核心算法,你可以了解下
2 与其他算法的联合,boosting是一种集成算法,你可以考虑SVM作为一种弱学习器在其框架中提升学习的准确率
SVM的本身算法真有好的改进完全可以在最高等级杂志上发论文,我上面说的两个方面虽然很简单但如果你有实验数据证明,在国内发表核心期刊完全没问题,本人也在论文纠结中。。

‘陆’ SVM算法的优缺点是什么

svm算法的有点是适合小样本数据,并且受噪声的影响较小,缺点是主要支持二分类

‘柒’ SVM算法,包括算法原理、算法实现、核函数参数的选取、优化、系数调整,能通俗地说明下吗谢谢

SVM 原理,在一个超空间找一个 切分的超平面,
SVM 算法实现,主要是解决SVM公式对偶问题,常用的是SMO,
SVM 核参数,隐含的将特征映射到高维空间,有兴趣可学习 learn with kernel.
SVM 参数调整分两部分,1 参数调整,用上述SMO算法,2 模型选择。

太累,不想写太多

‘捌’ 机器学习算法中的SVM和聚类算法

1.机器学习算法——SVM
这种算法就是支持向量机,而支持向量机算法是诞生于统计学习界,这也是机器学习中的经典算法,而支持向量机算法从某种意义上来说是逻辑回归算法的强化,这就是通过给予逻辑回归算法更严格的优化条件,支持向量机算法可以获得比逻辑回归更好的分类界线。不过如果通过跟高斯核的结合,支持向量机可以表达出非常复杂的分类界线,从而达成很好的的分类效果。核事实上就是一种特殊的函数,最典型的特征就是可以将低维的空间映射到高维的空间。
2.机器学习算法——聚类算法
前面的算法中的一个显着特征就是训练数据中包含了标签,训练出的模型可以对其他未知数据预测标签。在下面的算法中,训练数据都是不含标签的,而算法的目的则是通过训练,推测出这些数据的标签。这类算法有一个统称,即无监督算法。无监督算法中最典型的代表就是聚类算法。而聚类算法中最典型的代表就是K-Means算法。这一算法被广大朋友所应用。

想要学习了解更多机器学习的知识,推荐CDA数据分析师课程。“CDA 数据分析师”具体指在互联网、金融、零售、咨询、电信、医疗、旅游等行业专门 从事数据的采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据分析人才,推动科技创新进步,助力经济持续发展。点击预约免费试听课。

‘玖’ 毕业设计需要搞SVM分类算法的比较,都有哪些改进的SVM算法呢

比如LSVM,BT-SVM,NLSVM,PSVM等

热点内容
安卓系统个人字典有什么用 发布:2025-01-12 06:13:37 浏览:927
geventpython安装 发布:2025-01-12 06:13:34 浏览:337
放松解压助睡眠直播 发布:2025-01-12 06:13:00 浏览:827
车载wince和安卓哪个好用 发布:2025-01-12 05:58:18 浏览:838
vb6遍历文件夹 发布:2025-01-12 05:58:13 浏览:364
c在C语言中代表什么 发布:2025-01-12 05:52:59 浏览:46
政府PHP 发布:2025-01-12 05:34:30 浏览:651
转码算法 发布:2025-01-12 05:24:02 浏览:418
哪个国家开发安卓系统 发布:2025-01-12 05:08:58 浏览:407
华师数据库 发布:2025-01-12 05:07:03 浏览:505