算法题库
⑴ 推荐几个编程题库
http://acm.sgu.ru
SGU大学网站,算法性很强的,推荐
http://acm.timus.ru
URAL大学网站,做的人很多
http://train.usaco.org
USACO,USA网站,有很多大牛
http://acm.pku.e.cn
北大网站,中文讨论
其他还有很多,如西班牙的,浙江的,湖南的,同济的都很好
很快提高编程思维与水平
⑵ 算法时间复杂度的计算例题
第一题:
int i=1,k=100这条语句算法步数是2步,执行频率是1;
循环中, k=k+1;这条语句每次算法步数是1;执行频率是n/2-1; i+=2这条语句每次算法步数是1;执行频率是n/2-1;
所以算法复杂度为1*(n/2-1)+1*(n/2-1)+2=n=o(n);
⑶ JAVA蓝桥杯题库算法训练
不知道你在说什么,你到底要干嘛阿?
⑷ 组卷算法有哪几种
目前有三种:
1. 随机选取法:根据状态空间的控制指标,由计算机随机的抽取一道试题放入试题库,此过程不断重复,直到组卷完毕,或已无法从题库中抽取满足控制指标的试题为止。该方法结构简单,对于单道题的抽取运行速度较快,但是对于整个组卷过程来说组卷成功率低,即使组卷成功,花费时间也令人难以忍受。尤其是当题库中各状态类型平均出题量较低时,组卷往往以失败而告终。
2. 回溯试探法:这是将随机选取法产生的每一状态类型纪录下来,当搜索失败时释放上次纪录的状态类型,然后再依据一定的规律(正是这种规律破坏了选取试题的随机性)变换一种新的状态类型进行试探,通过不断的回溯试探直到试卷生成完毕或退回出发点为止,这种有条件的深度优先算法,对于状态类型和出题量都较少的题库系统而言,组卷成功率较好,但是在实际到一个应用时发现这种算法对内存的占用量很大,程序结构相对比较复杂,而且选取试题缺乏随机性,组卷时间长,后两点是用户无法接受的,因此它也不是一种很好的用来自动组卷的算法。
3. 遗传算法:是一种并行的、能够有效优化的算法,以morgan的基因理论及eldridge 与gould间断平衡理论为依据,同时融合了mayr的边缘物种形成理论和bertalanffv一般系统理论的一些思想,模拟达尔文的自然界遗传学:继承(基因遗传)、进化(基因突变)优胜劣汰(优的基因大量被遗传复制,劣的基因较少被遗传复制)。其实质就是一种把自然界有机体的优胜劣汰的自然选择、适者生存的进化机制与同一群体中个体与个体间的随机信息交换机制相结合的搜索算法。运用遗传算法求解问题首先需将所要求解的问题表示成二进制编码,然后根据环境进行基本的操作:selection,crossover,mutation……这样进行不断的所谓“生存选择”,最后收敛到一个最适应环境条件的个体上,得到问题的最优解。
⑸ 有没有比较简单的递归算法例题
VB 递归算法 求阶乘
Function Factorial(n As Long) As Long
If n = 1 Then Factorial = 1 Else Factorial = n * Factorial(n - 1)
End Function
Private Sub Command1_Click()
Dim n As Long
For n = 1 To 10
Print CStr(n); "!="; Factorial(n)
Next n
End Sub
⑹ 操作系统LRU算法习题求解!!!
LRU队列长度为 (384/128) = 3。
87、138、277、56、390、532、285、410、45、180、330、190
对应的页面号依次为:
0 、 1 、 2 、 0 、 3 、 4 、 2 、 3 、 0 、 1 、 2 、 1
然后看看那几个页面会缺页:
0、1、2 都会缺页,因为一开始内存里面什么页面都没有。
0会命中。 现在内存里面页面的LRU顺序为0,2,1
3、4都会缺页。 内存中没有。 现在内存里面LRU顺序为 4,3,0
2会缺页。 内存中没有。 LRU顺序为 2,4,3
0、1会缺页。 内存中没有。 LRU顺序为 1,0,2
2、1会命中。
总共12次访问,只有3次命中,9次失效。
失效率为 9/12 = 75%
⑺ 大公司笔试面试有哪些经典算法题目
1、二维数组中的查找
具体例题:如果一个数字序列逆置之后跟原序列是一样的就称这样的数字序列为回文序列。例如:{1, 2, 1}, {15, 78, 78, 15} , {112} 是回文序列, {1, 2, 2}, {15, 78, 87, 51} ,{112, 2, 11} 不是回文序列。现在给出一个数字序列,允许使用一种转换操作:选择任意两个相邻的数,然后从序列移除这两个数,并用这两个数字的和插入到这两个数之前的位置(只插入一个和)。现在对于所给序列要求出最少需要多少次操作可以将其变成回文序列?
⑻ C++经典算法题集。
《你必须知道的495个C语言问题》[PDF]
好好看看 数据结构 和 一些基本算法 STL
⑼ 数据结构与算法题
数据结构复习
重点是了解数据结构的逻辑结构、存储结构、数据的运算三方面的概念及相互关系,难点是算法复杂度的分析方法。
需要达到<识记>层次的基本概念和术语有:数据、数据元素、数据项、数据结构。特别是数据结构的逻辑结构、存储结构及数据运算的含义及其相互关系。数据结构的两大类逻辑结构和四种常用的存储表示方法。
需要达到<领会>层次的内容有算法、算法的时间复杂度和空间复杂度、最坏的和平均时间复杂度等概念,算法描述和算法分析的方法、对一般的算法要能分析出时间复杂度。
对于基本概念,仔细看书就能够理解,这里简单提一下:
数据就是指能够被计算机识别、存储和加工处理的信息的载体。
数据元素是数据的基本单位,有时一个数据元素可以由若干个数据项组成。数据项是具有独立含义的最小标识单位。如整数这个集合中,10这个数就可称是一个数据元素.又比如在一个数据库(关系式数据库)中,一个记录可称为一个数据元素,而这个元素中的某一字段就是一个数据项。
数据结构的定义虽然没有标准,但是它包括以下三方面内容:逻辑结构、存储结构、和对数据的操作。这一段比较重要,我用自己的语言来说明一下,大家看看是不是这样。
比如一个表(数据库),我们就称它为一个数据结构,它由很多记录(数据元素)组成,每个元素又包括很多字段(数据项)组成。那么这张表的逻辑结构是怎么样的呢? 我们分析数据结构都是从结点(其实也就是元素、记录、顶点,虽然在各种情况下所用名字不同,但说的是同一个东东)之间的关系来分析的,对于这个表中的任一个记录(结点),它只有一个直接前趋,只有一个直接后继(前趋后继就是前相邻后相邻的意思),整个表只有一个开始结点和一个终端结点,那我们知道了这些关系就能明白这个表的逻辑结构了。
而存储结构则是指用计算机语言如何表示结点之间的这种关系。如上面的表,在计算机语言中描述为连续存放在一片内存单元中,还是随机的存放在内存中再用指针把它们链接在一起,这两种表示法就成为两种不同的存储结构。(注意,在本课程里,我们只在高级语言的层次上讨论存储结构。)
第三个概念就是对数据的运算,比如一张表格,我们需要进行查找,增加,修改,删除记录等工作,而怎么样才能进行这样的操作呢? 这也就是数据的运算,它不仅仅是加减乘除这些算术运算了,在数据结构中,这些运算常常涉及算法问题