神经网络遗传算法
㈠ 神经网络和遗传算法有什么关系
遗传算法是一种智能优化算法,神经网络是人工智能算法的一种。
可以将遗传算法用于神经网络的参数优化中。
㈡ 人工神经网络和遗传算法的异同
神经网络是根据实际输出和期望输出的差值来调整权重,最终使输出接近期望输出。
遗传算法是根据假设不停地进化,最终使假设变成真实值。
他们都是可以达到最终的决策目的。
㈢ 遗传算法是如何与BP神经网络结合起来解决生产中的实际问题的(MATLAB)
先自学一下遗传算法和模拟退火法,然后在考虑如何与BP结合起来的,试一下吧!
㈣ trainbr加遗传算法的神经网络!好处,或者行不行!
神经网络的设计要用到遗传算法,遗传算法在神经网络中的应用主要反映在3个方面:网络的学习,网络的结构设计,网络的分析。 1.遗传算法在网络学习中的应用在神经网络中,遗传算法可用于网络的学习。这时,它在两个方面起作用 (1)学习规则的优化用遗传算法对神经网络学习规则实现自动优化,从而提高学习速率。 (2)网络权系数的优化用遗传算法的全局优化及隐含并行性的特点提高权系数优化速度。 2.遗传算法在网络设计中的应用用遗传算法设计一个优秀的神经网络结构,首先是要解决网络结构的编码问题;然后才能以选择、交叉、变异操作得出最优结构。编码方法主要有下列3种: (1)直接编码法这是把神经网络结构直接用二进制串表示,在遗传算法中,“染色体”实质上和神经网络是一种映射关系。通过对“染色体”的优化就实现了对网络的优化。 (2)参数化编码法参数化编码采用的编码较为抽象,编码包括网络层数、每层神经元数、各层互连方式等信息。一般对进化后的优化“染色体”进行分析,然后产生网络的结构。 (3)繁衍生长法这种方法不是在“染色体”中直接编码神经网络的结构,而是把一些简单的生长语法规则编码入“染色体”中;然后,由遗传算法对这些生长语法规则不断进行改变,最后生成适合所解的问题的神经网络。这种方法与自然界生物地生长进化相一致。 3.遗传算法在网络分析中的应用遗传算法可用于分析神经网络。神经网络由于有分布存储等特点,一般难以从其拓扑结构直接理解其功能。遗传算法可对神经网络进行功能分析,性质分析,状态分析。遗传算法虽然可以在多种领域都有实际应用,并且也展示了它潜力和宽广前景;但是,遗传算法还有大量的问题需要研究,目前也还有各种不足。首先,在变量多,取值范围大或无给定范围时,收敛速度下降;其次,可找到最优解附近,但无法精确确定最扰解位置;最后,遗传算法的参数选择尚未有定量方法。对遗传算法,还需要进一步研究其数学基础理论;还需要在理论上证明它与其它优化技术的优劣及原因;还需研究硬件化的遗传算法;以及遗传算法的通用编程和形式等。
㈤ 遗传神经网络算法和神经网络算法的区别
最本质的区别可以说是学习方法不同,或者说模型的优化方法不同。
前者应该是基于遗传算法进行网络权值的学习,而后者大都是采用反向传播(BP)算法进行权值学习,而这两种算法差异很大。建议你分别了解:
1)遗传算法
2)反向传播算法
㈥ 神经网络算法 遗传算法 模糊算法 哪个好
没有哪种算法更好的说法,因为每种算法都有自己的优势。只能说某种算法在处理某种问题时,效果更好更合适。
神经网络不能说是一种算法,它是一种数学网络结构,各神经元的权值、阈值是用某种训练算法计算出来的。神经网络适用于非线性系统,可用于难以用数学表达式来描述的系统。
遗传算法在全局寻优问题上效果很好,因其收敛速度较快,且不易陷入局部极小点。其中实数编码法适合与神经网络结合,例如GA-BP神经网络。
模糊算法可将一些难以量化的参数模糊处理,并且算法较简单,尤其是适用于专家经验占主要地位的系统,因为添加一条专家经验只需往规则库里添加一条语句即可。用这种算法要注意区间不能划得太宽,否则算法太不精确。
㈦ 什么时候使用遗传算法 vs 什么时候使用神经网络
一个遗传算法 ( GA ) 搜索技术用于计算找到精确或近似优化和搜索问题的解决方案。神经网络是非线性统计数据建模工具。可以用来建模输入和输出之间复杂的关系,或者为数据中的查找模式 。当有一个条目的数量在不同的类中,神经网络可以"学习"分类项还没有"看见"之前。 比如,人脸识别,语音识别。遗传算法可以执行定向搜索解决方案的空间。比如:查找两点之间的最短路径。
㈧ hopfield神经网络和遗传算法的不同点
两者不同的地方非常多吖,或者说,两者根本就没有多少相同的。
hopfield网络,基本上是设置了一个机制,使每次能量都下跌。
而遗传算法,则非常的不同,是种群搜索的机制,先初始化一堆的解,然后每次按概述让优秀解进入下一代(注意到,有可能有不优秀的也可以进入,而hopfield是每一代能量都会下跌),下一代再通过交叉和变异等机制,产生新的一代。由于每次竞选下一代都会让优秀的更大概率通过,所以按概率,每一代都会比上一代更优秀 ,就这样,最后进化到中够优秀的一代。
两者同是通过数次跌代,最后趋于稳定。
但两者不同,遗传算法是每一代是一个种群,而hopfield是一个个体。遗传算法每一代允许更差的情况,有助于跳出局部最成。而hopfield每次能量都是下跌的,有贪婪算法的味道 ,一般不能跳出局部最优。
这样。
《神经网络之家》
㈨ 关于神经网络,蚁群算法和遗传算法
神经网络并行性和自适应性很强,应用领域很广,在任何非线性问题中都可以应用,如控制、信息、预测等各领域都能应用。
蚁群算法最开始应用于TSP问题,获得了成功,后来又广泛应用于各类组合优化问题。但是该算法理论基础较薄弱,算法收敛性都没有得到证明,很多参数的设定也仅靠经验,实际效果也一般,使用中也常常早熟。
遗传算法是比较成熟的算法,它的全局寻优能力很强,能够很快地趋近较优解。主要应用于解决组合优化的NP问题。
这三种算法可以相互融合,例如GA可以优化神经网络初始权值,防止神经网络训练陷入局部极小且加快收敛速度。蚁群算法也可用于训练神经网络,但一定要使用优化后的蚁群算法,如最大-最小蚁群算法和带精英策略。