佛洛依德算法
❶ 迪杰斯特拉算法和弗洛伊德算法有什么区别
带权的无向图的最短路径又叫最小生成树,Prim算法和Kruskal算法;带权的有向图的最短路径算法有迪杰斯特拉算法和佛洛依德算法;
❷ floyd算法
这是由其算法本身所决定的,其每一步求出任意一对顶点之间仅通过中间节点1,2,...,k的最短距离,当1,2,...,k扩展到所有顶点时,算法解出任意一对顶点间的最短距离,故顺序自然是:
for(k=1;k<n;++k)
//枚举任意一对顶点
由其状态转移方程来看,这个算法的顺序也很清晰,应该是先计算较小的k时任意ij之间的最短距离:
dij(k) = wij 如果k=0
min(dij(k-1),dik(k-1)+dkj(k-1)) 如果k>=1
其中i,j表示点对,k表示第1,2,...,k时的最短路径
❸ 弗洛伊德的算法(Floyd’s algorithm )
假设这个图的weight matrix存在map[5][5]中,
for(intk=0;k<5;k++)
for(inti=0;i<5;i++)
for(intj=0;j<5;j++)if(i!=j){
if(map[i][k]+map[k][j]<map[i][j])
map[i][j]=map[i][k]+map[k][j];
}
处理完之后map[i][j]存的就是i,j之间的最短路径长度。
简单的说,当执行完一次最外层循环时,map记录的时i,j之间允许使用中间节点{0, ..., k}的最短路径。
❹ floyd算法能不能保证有最优解
Floyd算法又称为弗洛伊德算法,插点法,是一种用于寻找给定的加权图中顶点间最短路径的算法。
算法过程:
把图用邻接距阵G表示出来,如果从Vi到Vj有路可达,则G[i,j]=d,d表示该路的长度;否则G[i,j]=空值。
定义一个距阵D用来记录所插入点的信息,D[i,j]表示从Vi到Vj需要经过的点,初始化D[i,j]=j。
把各个顶点插入图中,比较插点后的距离与原来的距离,G[i,j] = min( G[i,j], G[i,k]+G[k,j] ),如果G[i,j]的值变小,则D[i,j]=k。
在G中包含有两点之间最短道路的信息,而在D中则包含了最短通路径的信息。
比如,要寻找从V5到V1的路径。根据D,假如D(5,1)=3则说明从V5到V1经过V3,路径为{V5,V3,V1},如果D(5,3)=3,说明V5与V3直接相连,如果D(3,1)=1,说明V3与V1直接相连。
❺ 求弗洛伊德算法的详细解释~
floyd算法思想:1,构建一个邻接矩阵存储任意两点之间的权值如图D0.
2、例如求v1,v4之间的最短路径。先增加v2做中间顶点,D[1][4]=∞。if(D[1][4]>D[1][2]+D[2]4])=6+4)D[1][4]=10;这样就可以了。
3、如不能在离得较远的两点(例v1,v9)直接得到上述可以满足if的中间点,则跟据你书本的代码可以先构建原点到中间点的最短路径,继而就可以求得vi,v9之间的最短路径
❻ 最短路径的弗洛伊德算法我曾经想出不严格的证明,不满意,严格的数学证明,我无法想出来,如何得到
看下于丹讲的论语 绝对对你管用 要用心去领会《论语》心得(一)《天地人之道》 mms://winmedia.cctv/jiajiangtan/2006/11/jiajiangtan_300。
❼ Floyd算法与Dijkstra算法的不同
我来告诉你标准答案!Floyd算法又称为弗洛伊德算法,插点法,是一种用于寻找给定的加权图中顶点间最短路径的算法。
算法过程:1,从任意一条单边路径开始。所有两点之间的距离是边的权,或者无穷大,如果两点之间没有边相连。
2,对于每一对顶点u和v,看看是否存在一个顶点w使得从u到w再到v比己知的路径更短。如果是更新它。
Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。
算法步骤如下:
1.初使时令S={V0},T={其余顶点},T中顶点对应的距离值
若存在,d(V0,Vi)为弧上的权值
若不存在,d(V0,Vi)为∝
2.从T中选取一个其距离值为最小的顶点W且不在S中,加入S
3.对T中顶点的距离值进行修改:若加进W作中间顶点,从V0到Vi的
距离值比不加W的路径要短,则修改此距离值
重复上述步骤2、3,直到S中包含所有顶点,即S=T为止
❽ 【讨论】最短路径弗洛伊德算法的时间复杂度
那么你的意思是说四个循环全部都执行了的哦?否则就不是O(n4)。你看最后一个循环是需要判断进入的,也就是说,那个循环在最内层,本身次数就少,加上排除不合法条件,很少能执行到,根据算法思想,那么应该忽略常数级
❾ Floyd算法的算法过程
1,从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。
2,对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比已知的路径更短。如果是更新它。
把图用邻接矩阵G表示出来,如果从Vi到Vj有路可达,则G[i,j]=d,d表示该路的长度;否则G[i,j]=无穷大。定义一个矩阵D用来记录所插入点的信息,D[i,j]表示从Vi到Vj需要经过的点,初始化D[i,j]=j。把各个顶点插入图中,比较插点后的距离与原来的距离,G[i,j] = min( G[i,j], G[i,k]+G[k,j] ),如果G[i,j]的值变小,则D[i,j]=k。在G中包含有两点之间最短道路的信息,而在D中则包含了最短通路径的信息。
比如,要寻找从V5到V1的路径。根据D,假如D(5,1)=3则说明从V5到V1经过V3,路径为{V5,V3,V1},如果D(5,3)=3,说明V5与V3直接相连,如果D(3,1)=1,说明V3与V1直接相连。