当前位置:首页 » 操作系统 » 检索算法

检索算法

发布时间: 2022-01-21 06:26:17

‘壹’ 运动估计的搜索算法

匹配误差函数,可以用各种优化方法进行最小化,这就需要我们开发出高效的运动搜索算法,
主要的几种算法归纳如下: 为当前帧的一个给定块确定最优位移矢量的全局搜索算法方法是:在一个预先定义的搜索区域
内,把它与参考帧中所有的候选块进行比较,并且寻找具有最小匹配误差的一个。这两个块之间的
位移就是所估计的 MV,这样做带来的结果必然导致极大的计算量。
选择搜索区域一般是关于当前块对称的,左边和右边各有 Rx 个像素,上边和下边各有 Ry个像素。
如果已知在水平和垂直方向运动的动态范围是相同的,那么 Rx=Ry=R。估计的精度是由搜索的步长决定的,步长是相邻两个候选块在水平或者垂直方向上的距离。通常,沿着两个方向使用相同的步长。在最简单的情况下,步长是一个像素,称为整数像素精度搜索,该种算法也称为无损搜索算法。 由于在穷尽块匹配算法中搜索相应块的步长不一定是整数,一般来说,为了实现 1/K像素步长,对参考帧必须进行 K倍内插。根据实验证明,与整像素精度搜索相比,半像素精度搜索在估计精度上有很大提高,特别是对于低清晰度视频。
但是,应用分数像素步长,搜索算法的复杂性大大增加,例如,使用半像素搜索,搜索点的总数比整数像素精度搜索大四倍以上。
那么,如何确定适合运动估计的搜索步长,对于视频编码的帧间编码来说,即使得预测误差最小化。 快速搜索算法和全局搜索算法相比,虽然只能得到次最佳的匹配结果,但在减少运算量方面效果显着。
1) 二维对数搜索法
这种算法的基本思路是采用大菱形搜索模式和小菱形搜索模式,步骤如图 6.4.20 所示,从相应于零位移的位置开始搜索,每一步试验菱形排列的五个搜索点。下一步,把中心移到前一步找到的最佳匹配点并重复菱形搜索。当最佳匹配点是中心点或是在最大搜索区域的边界上时,就减小搜索步长(菱形的半径) 。否则步长保持不变。当步长减小到一个像素时就到达了最后一步,并且在这最
后一步检验九个搜索点。初始搜索步长一般设为最大搜索区域的一半。
其后这类算法在搜索模式上又做了比较多的改进,在搜索模式上采用了矩形模式,还有六边形模式、十字形模式等等。
2) 三步搜索法
这种搜索的步长从等于或者略大于最大搜索范围的一半开始。第一步,在起始点和周围八个 “1”标出的点上计算匹配误差,如果最小匹配误差在起始点出现,则认为没有运动;第二步,以第一步中匹配误差最小的点(图中起始点箭头指向的“1”)为中心,计算以“2”标出的 8个点处的匹配误差。注意,在每一步中搜索步长搜都比上一步长减少一半,以得到更准确的估计;在第三步以后就能得到最终的估计结果,这时从搜索点到中心点的距离为一个像素。
但是,上述一些快速算法更适合用于估计运动幅度比较大的场合,对于部分运动幅度小的场合,它们容易落入局部最小值而导致匹配精度很差,已经有很多各种各样的视频流证明了这一点。
现在,针对这一缺点,国内外诸多专家学者也提出了相应的应对措施,特别是针对H.264编码标准要求的一些快速算法的改进,并取得卓越的效果。例如[7]中提到的基于全局最小值具有自适应性的快速算法,这种算法通过在每一搜索步骤选择多个搜索结果,基于这些搜索结果之间的匹配误差的不同得到的最佳搜索点,因而可以很好地解决落入局部最小值的问题。
[8]中提到一种适用于H.264的基于自适应搜索范围的快速运动估计算法,经过实验证明对于如salesman等中小运动序列,其速度可接近全局搜索算法的400倍,接近三步搜索算法的4倍;而对于大运动序列,如table tennis,该算法则会自动调节搜索点数以适应复杂的运动。当从总体上考察速度方面的性能时,可以看到,该算法平均速度是全局搜索算法的287.4倍,三步搜索的2.8倍。 分级搜索算法的基本思想是从最低分辨率开始逐级精度的进行不断优化的运动搜索策略,首先取得两个原始图象帧的金子塔表示,从上到下分辨率逐级变细,从顶端开始,选择一个尺寸比较大的数据块进行一个比较粗略的运动搜索过程,对在此基础上进行亚抽样(即通过降低数据块尺寸(或提高抽样分辨率)和减少搜索范围的办法)进行到下一个较细的级来细化运动矢量,而一个新的搜索过程可以在上一级搜索到的最优运动矢量周围进行。在亚抽样的过程中也有着不同的抽样方式和抽样滤波器。这种方法的优点是运算量的下降比例比较大,而且搜索的比较全面。
缺点是由于亚抽样或者滤波器的采用而使内存的需求增加,另外如果场景细节过多可能会容易落入局部最小点。 由于物体的运动千变万化,很难用一种简单的模型去描述,也很难用一种单一的算法来搜索最佳运动矢量,因此实际上大多采用多种搜索算法相组合的办法,可以在很大程度上提高预测的有效性和鲁棒性。
事实上,在运动估计时也并不是单一使用上述某一类搜索算法,而是根据各类算法的优点灵活组合采纳。在运动幅度比较大的情况下可以采用自适应的菱形搜索法和六边形搜索法,这样可以大大节省码率而图象质量并未有所下降。在运动图象非常复杂的情况下,采用全局搜索法在比特数相对来说增加不多的情况下使得图象质量得到保证。 H.264 编码标准草案推荐使用 1/4分数像素精度搜索。[6]中提到在整像素搜索时采用非对称十字型多层次六边形格点运动搜索算法,然后采用钻石搜索模型来进行分数像素精度运动估计。
解码器要求传送的比特数最小化,而复杂的模型需要更多的比特数来传输运动矢量,而且易受噪声影响。因此,在提高视频的编码效率的技术中,运动补偿精度的提高和比特数最小化是相互矛盾的,这就需要我们在运动估计的准确性和表示运动所用的比特数之间作出折中的选择。它的效果与选用的运动模型是密切相关的。

‘贰’ 全文检索算法,请问谁能给我点头绪落,不懂啊。。

全文检索技术
全文检索是指索引程序扫描文章中的每个词并建立对应索引,记录该词出现的位置和次数。当通过搜索引擎查询时,检索程序就在记录的索引进行查找并返回给用户。全文检索又分为基于字的全文索引和基于词的全文索引。基于字的全文索引会对内容中的每个字建立索引并记录,此方法查全率高,但查准率低,特别是对于中文,有时搜索马克,会列出马克思的结果。基于词的全文索引是把一个词语作为一个单位进行索引记录,并能处理同义词。搜索引擎有自己的词库,当用户搜索时,搜索引擎会从词库中抽取关键词作为索引项,这样可以大大提高检索的准确率。
中文分词技术
一直以来大家都比较熟悉网络,网络有自己的中文分词技术。一般采用的包括正向最大匹配,反向最大匹配,最佳匹配法,专家系统方法等。其中最大正向匹配是最常用的分词解决方案,它采用机械式算法,通过建立词典并进行正向最大匹配对中文进行分词。举个简单的例子比如搜索“北京大学在哪里”,则返回结果很多都是包含北京大学,北大等词语的网页,搜索引擎就是采用正向最大匹配去判断,把北京大学当做一个词语来索引记录并返回。当然,正向最大匹配也有不完整性,比如长度过长的词语,搜索引擎有时无法准确的分词,或者对前后都相互关联的词无法准确分词。例如“结合成分子时”,会被返回结合、成分、子时,而有时我们想要的关键词是“分子”。
很多时候网络都会根据自己词库中词语的权重进行拆分,权重的计算基于生活各个方面,比较复杂,搜索引擎要做的就是返回用户最想要的结果,有时站长们做网站要站在用户的角度去考虑问题,其实这也是站在搜索引擎的角度考虑问题,不论在确定目标关键词或者是长尾关键词时,都可以根据中文分词的原理来选择,这样可以最大化的减少无用功。
分词原理不断在变化,不断在更新,我们应该继续学习,只有掌握了本质才能抓住实质。

‘叁’ 搜索引擎算法的常见的搜索引擎算法

网络的石榴算法,绿萝算法
谷歌的熊猫算法,企鹅算法

‘肆’ 搜索引擎算法的定义

搜索引擎算法:获得网站网页资料,建立数据库并提供查询的系统,我们都可以把它叫做搜索引擎。搜索引擎的数据库是依靠一个叫“网络机器人(crawlers)”或叫“网络蜘蛛(Spider)”的软件,通过网络上的各种链接自动获取大量网页信息内容,并按一定的规则分析整理形成的。Google、网络都是比较典型的搜索引擎系统。 为了更好的服务网络搜索,搜索引擎的分析整理规则---即搜索引擎算法是变化的。搜索引擎算法的变革将引领第四代搜索引擎的升级。

‘伍’ 百度搜索引擎的算法是怎样的

网络基础算法分析:链接流行度核心算法+网络推广+框计算+开放平台
1.【链接流行度】和大多数关键词搜索引擎一样,页面URL地址链接的流行程度为核心的基础核心算法;
2.【网络推广】起先叫做网络竞价,后改为网络推广,包括关键词竞价算法和网盟推广算法两部分;
3.【框计算】语义分析、行为分析、智能人机交互、海量基础算法等。
网络收录流程
1.【页面的收录】搜索蜘蛛程序>收录的页面链接>现新的链接并爬行>的页面及内容合格>录快照并分类存储>立页面基本数据(页面URL、页面关键词、页面标题描述、收录来源、收录时间、内容简述、页面权重、更新周期);
2.【网络免费产品】网络、网络文库、网络贴吧、网络知道、网络空间等网络自身免费产品的页面收录;
3.【网络开放平台】主要是站长提供的结构化数据(网站与网络的深度合作,如汽车网站的参数数据、网络知道接口等)和开发者提交的各种应用(开发者加入网络开发者中心并提交相关应用通过审核);
4.【网络竞价推广】网站主开通网络推广账户>付费并通过网站审核>辑关键词广告及推广计划>交网络推广后台;
5.【网络网盟推广】网站主开通网络推广账户>付费并通过网站审核>辑网盟广告及推广计划>交网络推广后台;网络联盟广告合作伙伴站长参与网盟推广并审核通过》预留广告位并做好网盟接口。
网络检索流程
搜索需求>义分析>据库检索>名显示反馈
1.【网络搜索页面的检索】用户输入关键词并检索>架算(语义分析及分词判断、行为分析、智能人机交互、海量基础算法)>计算结果(开放平台的数据、传统搜索结果、网络推广结果、网络自身产品结果)>计算结果排名。
2.【网络网盟页面的推荐】用户访问网络网盟某合作网站页面>盟算法根据用户浏览器大量有价值的搜索Cookis计算并推荐广告>户被有质量的广告吸引并点击>盟推广后台引导用户进入参与网盟推广的网站相应页面。

‘陆’ 用数据结构编写一个斐波那契数据的检索算法程序(0 1 1 2 3 5)

什么意思?
斐波那契数列吗?
var n:integer
f:array[1..90]of longint;
function fb(i:integer):longint;
begin
if i=1 then exit(1);
if i=2 then exit(2);
if f[i]<>0 then exit(f[i]);
fb:=fb(i-1)+fb(i-2);
f[i]:=fb;
end;
begin
read(n);
writeln(fb(n));
end.

‘柒’ 搜索算法中,A算法A*算法的区别(急)

A算法一般指某个搜索算法的朴素的思路
A*指使用了启发式搜索之后的算法,也就是运算速度会快很多,但不一定能保证最后得到最优解

‘捌’ 搜索引擎算法都有哪些

这个的话一般来说都不是很清楚,
但如果是一些大体的算法 如下: 谷歌PR值算法:(1-d)+d/(pr(t)/pr(y)+……pr(tn)/pr(yn)+……)
D代表0.85 而pr(t)是指友情链接的对方网站的PR值 pr(y)是指友情链接的对方网站的导出友情链接的数量

‘玖’ 常见的搜索算法有哪几种

  • 广度优先搜索(BFS)

  • 深度优先搜索(DFS)

  • 爬山法(Hill Climbing)

  • 最佳优先算法(Best-first search strategy)

  • 回溯法 (Backtracking)

  • 分支限界算法(Branch-and-bound Search Algorithm)

‘拾’ 几种搜索引擎算法研究

2.1Google和PageRank算法
搜索引擎Google最初是斯坦福大学的博士研究生Sergey Brin和Lawrence Page实现的一个原型系统[2],现在已经发展成为WWW上最好的搜索引擎之一。Google的体系结构类似于传统的搜索引擎,它与传统的搜索引擎最大的不同处在于对网页进行了基于权威值的排序处理,使最重要的网页出现在结果的最前面。Google通过PageRank元算法计算出网页的PageRank值,从而决定网页在结果集中的出现位置,PageRank值越高的网页,在结果中出现的位置越前。
2.1.1PageRank算法
PageRank算法基于下面2个前提:
前提1:一个网页被多次引用,则它可能是很重要的;一个网页虽然没有被多次引用,但是被重要的网页引用,则它也可能是很重要的;一个网页的重要性被平均的传递到它所引用的网页。这种重要的网页称为权威(Authoritive)网页。
前提2:假定用户一开始随机的访问网页集合中的一个网页,以后跟随网页的向外链接向前浏览网页,不回退浏览,浏览下一个网页的概率就是被浏览网页的PageRank值。

热点内容
花瓣压缩 发布:2025-01-08 19:45:51 浏览:856
重装系统怎么设置服务器 发布:2025-01-08 19:40:08 浏览:718
谷歌解压版 发布:2025-01-08 19:35:27 浏览:740
c语言找零钱 发布:2025-01-08 19:35:25 浏览:999
压缩大声音 发布:2025-01-08 19:32:08 浏览:530
yy易语言源码 发布:2025-01-08 19:24:42 浏览:884
4g怎么设置服务器 发布:2025-01-08 19:24:09 浏览:891
安卓如何使用messager 发布:2025-01-08 19:14:47 浏览:129
电脑服务器的终端 发布:2025-01-08 19:14:46 浏览:829
电脑系统的密码文件是什么 发布:2025-01-08 19:14:11 浏览:362