当前位置:首页 » 操作系统 » crc32算法

crc32算法

发布时间: 2022-01-20 13:35:20

⑴ CRC32的计算方法

CRC的本质是模-2除法的余数,采用的除数不同,CRC的类型也就不一样。通常,CRC的除数用生成多项式来表示。 最常用的CRC码及生成多项式名称生成多项式。

CRC-12:


(1)crc32算法扩展阅读

通常的CRC算法在计算一个数据段的CRC值时,其CRC值是由求解每个数值的CRC值的和对CRC寄存器的值反复更新而得到的。这样,求解CRC的速度较慢。通过对CRC算法的研究,我们发现:一个8位数据加到16位累加器中去,只有累加器的高8位或低8位与数据相作用,其结果仅有256种可能的组合值。

因而,我们可以用查表法来代替反复的运算,这也同样适用于CRC32的计算。本文所提供的程序库中,函数crchware是一般的16位CRC的算法。mk-crctbl用以在内存中建立一个CRC数值表。

⑵ 有多种CRC(CRC32也有多种,包括CRC-32-IEEE 802.3),计算出的值不同吗与码表有关系还是算法

CRC模式都是一样的,本质上都是大整数二进制除法。
码表不同是由于提供的poly不一样,所以算出来的结果也不同
比如x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1
对应的poly就是0xEDB88320
所以基本用这种方程式来表达CRC的种类

⑶ crc32算法原理

一、循环冗余码校验英文名称为Cyclical Rendancy Check,简称CRC.
它是利用除法及余数的原理来作错误侦测(Error Detecting)的.实际应用时,发送装置计算出CRC值并随数据一同发送给接收装置,接收装置对收到的数据重新计算CRC并与收到的CRC相比较,若两个CRC值不同,则说明数据通讯出现错误.
根据应用环境与习惯的不同,CRC又可分为以下几种标准:
①CRC-12码;
②CRC-16码;
③CRC-CCITT码;
④CRC-32码.
CRC-12码通常用来传送6-bit字符串.
CRC-16及CRC-CCITT码则用是来传送8-bit字符,其中CRC-16为美国采用,而CRC-CCITT为欧洲国家所采用.
CRC-32码大都被采用在一种称为Point-to-Point的同步传输中.
下面以最常用的CRC-16为例来说明其生成过程.
CRC-16码由两个字节构成,在开始时CRC寄存器的每一位都预置为1,然后把CRC寄存器与8-bit的数据进行异或(异或:二进制运算 相同为0,不同为1;0^0=0;0^1=1;1^0=1;1^1=0),
之后对CRC寄存器从高到低进行移位,在最高位(MSB)的位置补零,而最低位(LSB,移位后已经被移出CRC寄存器)如果为1,则把寄存器与预定义的多项式码进行异或,否则如果LSB为零,则无需进行异或.重复上述的由高至低的移位8次,第一个8-bit数据处理完毕,用此时CRC寄存器的值与下一个8-bit数据异或并进行如前一个数据似的8次移位.所有的字符处理完成后CRC寄存器内的值即为最终的CRC值.
下面为CRC的计算过程:
1.设置CRC寄存器,并给其赋值FFFF(hex).
2.将数据的第一个8-bit字符与16位CRC寄存器的低8位进行异或,并把结果存入CRC寄存器.
3.CRC寄存器向右移一位,MSB补零,移出并检查LSB.
4.如果LSB为0,重复第三步;若LSB为1,CRC寄存器与多项式码相异或.
5.重复第3与第4步直到8次移位全部完成.此时一个8-bit数据处理完毕.
6.重复第2至第5步直到所有数据全部处理完成.
7.最终CRC寄存器的内容即为CRC值.
常用的CRC循环冗余校验标准多项式如下:
CRC(16位) = X16+X15+X2+1
CRC(CCITT) = X16+X12 +X5+1
CRC(32位) = X32+X26+X23+X16+X12+X11+X10+ X8+X7+X5+X4+X2+X+1
以CRC(16位)多项式为例,其对应校验二进制位列为1 1000 0000 0000 0101.
注意:这儿列出的标准校验多项式都含有(X+1)的多项式因子;各多项式的系数均为二进制数,所涉及的四则运算仍遵循对二取模的运算规则.
(注:对二取模的四则运算指参与运算的两个二进制数各位之间凡涉及加减运算时均进行XOR异或运算,即:1 XOR 1=0,0 XOR 0=0,1 XOR 0=1,0 XOR 1=1,即相同为0,不同为1)

⑷ 什么是CRC32校验

CRC32算法学习笔记以及如何用java实现

CRC32算法学习笔记以及如何用java实现

一:说明

论坛上关于CRC32校验算法的详细介绍不多。前几天偶尔看到Ross N. Williams的文章,总算把CRC32算法的来龙去脉搞清楚了。本来想把原文翻译出来,但是时间参促,只好把自己的一些学习心得写出。这样大家可以更快的了解CRC32的主要思想。由于水平有限,还恳请大家指正。原文可以访问:http://www.repairfaq.org/filipg/LINK/F_crc_v31.html 。

二:基本概念及相关介绍

2.1 什么是CRC

在远距离数据通信中,为确保高效而无差错地传送数据,必须对数据进行校验即差错控制。循环冗余校验CRC(Cyclic Rendancy Check/Code)是对一个传送数据块进行校验,是一种高效的差错控制方法。

CRC校验采用多项式编码方法。多项式乘除法运算过程与普通代数多项式的乘除法相同。多项式的加减法运算以2为模,加减时不进,错位,如同逻辑异或运算。

2.2 CRC的运算规则

CRC加法运算规则:0+0=0

0+1=1

1+0=1

1+1=0 (注意:没有进位)

CRC减法运算规则:

0-0=0

0-1=1

1-0=1

1-1=0

CRC乘法运算规则:

0*0=0

0*1=0

1*0=0

1*1=1

CRC除法运算规则:

1100001010 (注意:我们并不关心商是多少。)

_______________

10011 ) 11010110110000

10011,,.,,....

-----,,.,,....

10011,.,,....

10011,.,,....

-----,.,,....

00001.,,....

00000.,,....

-----.,,....

00010,,....

00000,,....

-----,,....

00101,....

00000,....

-----,....

01011....

00000....

-----....

10110...

10011...

-----...

01010..

00000..

-----..

10100.

10011.

-----.

01110

00000

-----

1110 = 余数

2.3 如何生成CRC校验码

(1) 设G(X)为W阶,在数据块末尾添加W个0,使数据块为M+ W位,则相应的多项式为XrM(X);

(2) 以2为模,用对应于G(X)的位串去除对应于XrM(X)的位串,求得余数位串;

(3) 以2为模,从对应于XrM(X)的位串中减去余数位串,结果就是为数据块生成的带足够校验信息的CRC校验码位串。

2.4 可能我们会问那如何选择G(x)

可以说选择G(x)不是一件很容易的事。一般我们都使用已经被大量的数据,时间检验过的,正确的,高效的,生成多项式。一般有以下这些:

16 bits: (16,12,5,0) [X25 standard]

(16,15,2,0) ["CRC-16"]

32 bits: (32,26,23,22,16,12,11,10,8,7,5,4,2,1,0) [Ethernet]

三: 如何用软件实现CRC算法

现在我们主要问题就是如何实现CRC校验,编码和解码。用硬件实现目前是不可能的,我们主要考虑用软件实现的方法。

以下是对作者的原文的翻译:

我们假设有一个4 bits的寄存器,通过反复的移位和进行CRC的除法,最终该寄存器中的值就是我们所要求的余数。

3 2 1 0 Bits

+---+---+---+---+

Pop <-- | | | | | <----- Augmented message(已加0扩张的原始数据)

+---+---+---+---+

1 0 1 1 1 = The Poly

(注意: The augmented message is the message followed by W zero bits.)

依据这个模型,我们得到了一个最最简单的算法:

把register中的值置0.

把原始的数据后添加r个0.

While (还有剩余没有处理的数据)

Begin

把register中的值左移一位,读入一个新的数据并置于register的0 bit的位置。

If (如果上一步的左移操作中的移出的一位是1)

register = register XOR Poly.

End

现在的register中的值就是我们要求的crc余数。

我的学习笔记:

可为什么要这样作呢?我们从下面的实例来说明:

1100001010

_______________

10011 ) 11010110110000

10011,,.,,....

-----,,.,,....

-》 10011,.,,....

10011,.,,....

-----,.,,....

-》 00001.,,....

00000.,,....

-----.,,....

00010,,....

00000,,....

-----,,....

00101,....

00000,....

我们知道G(x)的最高位一定是1,而商1还是商0是由被除数的最高位决定的。而我们并不关心商究竟是多少,我们关心的是余数。例如上例中的G(x)有5位。我们可以看到每一步作除法运算所得的余数其实就是被除数的最高位后的四位于G(x)的后四位XOR而得到的。那被除数的最高位有什么用呢?我们从打记号的两个不同的余数就知道原因了。当被除数的最高位是1时,商1然后把最高位以后的四位于G(x)的后四位XOR得到余数;如果最高位是0,商0然后把被除数的最高位以后的四位于G(x)的后四位XOR得到余数,而我们发现其实这个余数就是原来被除数最高位以后的四位的值。也就是说如果最高位是0就不需要作XOR的运算了。到这我们总算知道了为什么先前要这样建立模型,而算法的原理也就清楚了。

以下是对作者的原文的翻译:

可是这样实现的算法却是非常的低效。为了加快它的速度,我们使它一次能处理大于4 bit的数据。也就是我们想要实现的32 bit的CRC校验。我们还是假设有和原来一样的一个4 "bit"的register。不过它的每一位是一个8 bit的字节。

3 2 1 0 Bytes

+----+----+----+----+

Pop <-- | | | | | <----- Augmented message

+----+----+----+----+

1<------32 bits------> (暗含了一个最高位的“1”)

根据同样的原理我们可以得到如下的算法:

While (还有剩余没有处理的数据)

Begin

检查register头字节,并取得它的值

求不同偏移处多项式的和

register左移一个字节,最右处存入新读入的一个字节

把register的值和多项式的和进行XOR运算

End

我的学习笔记:

可是为什么要这样作呢? 同样我们还是以一个简单的例子说明问题:

假设有这样的一些值:

当前register中的值: 01001101

4 bit应该被移出的值:1011

生成多项式为: 101011100

Top Register

---- --------

1011 01001101

1010 11100 + (CRC XOR)

-------------

0001 10101101

首4 bits 不为0说明没有除尽,要继续除:

0001 10101101

1 01011100 + (CRC XOR)

-------------

0000 11110001

^^^^

首4 bits 全0说明不用继续除了。

那按照算法的意思作又会有什么样的结果呢?

1010 11100

1 01011100+

-------------

1011 10111100

1011 10111100

1011 01001101+

-------------

0000 11110001

现在我们看到了这样一个事实,那就是这样作的结果和上面的结果是一致的。这也说明了算法中为什么要先把多项式的值按不同的偏移值求和,然后在和register进行异或运算的原因了。另外我们也可以看到,每一个头字节对应一个值。比如上例中:1011,对应01001101。那么对于32 bits 的CRC 头字节,依据我们的模型。头8 bit就该有 2^8个,即有256个值与它对应。于是我们可以预先建立一个表然后,编码时只要取出输入数据的头一个字节然后从表中查找对应的值即可。这样就可以大大提高编码的速度了。

+----+----+----+----+

+-----< | | | | | <----- Augmented message

| +----+----+----+----+

| ^

| |

| XOR

| |

| 0+----+----+----+----+

v +----+----+----+----+

| +----+----+----+----+

| +----+----+----+----+

| +----+----+----+----+

| +----+----+----+----+

| +----+----+----+----+

+-----> +----+----+----+----+

+----+----+----+----+

+----+----+----+----+

+----+----+----+----+

+----+----+----+----+

255+----+----+----+----+

以下是对作者的原文的翻译:

上面的算法可以进一步优化为:

1:register左移一个字节,从原始数据中读入一个新的字节.

2:利用刚从register移出的字节作为下标定位 table 中的一个32位的值

3:把这个值XOR到register中。

4:如果还有未处理的数据则回到第一步继续执行。

用C可以写成这样:

r=0;

while (len--)
r = ((r << 8) | p*++) ^ t[(r >> 24) & 0xFF];

可是这一算法是针对已经用0扩展了的原始数据而言的。所以最后还要加入这样的一个循环,把W个0加入原始数据。

我的学习笔记:

注意不是在预处理时先加入W个0,而是在上面算法描述的循环后加入这样的处理。

for (i=0; i<W/4; i++)
r = (r << 8) ^ t[(r >> 24) & 0xFF];
所以是W/4是因为若有W个0,因为我们以字节(8位)为单位的,所以是W/4个0 字节。注意不是循环w/8次
以下是对作者的原文的翻译:
1:对于尾部的w/4个0字节,事实上它们的作用只是确保所有的原始数据都已被送入register,并且被算法处理。

2:如果register中的初始值是0,那么开始的4次循环,作用只是把原始数据的头4个字节送入寄存器。(这要结合table表的生成来看)。就算register的初始值不是0,开始的4次循环也只是把原始数据的头4个字节把它们和register的一些常量XOR,然后送入register中。

3:(A xor B) xor C = A xor (B xor C)

总上所述,原来的算法可以改为:

+-----<Message (non augmented)
|
v 3 2 1 0 Bytes
| +----+----+----+----+
XOR----<| | | | |
| +----+----+----+----+
| ^
| |
| XOR
| |
| 0+----+----+----+----+
v +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
+----->+----+----+----+----+
+----+----+----+----+
+----+----+----+----+
+----+----+----+----+
+----+----+----+----+
255+----+----+----+----+

算法:

1:register左移一个字节,从原始数据中读入一个新的字节.

2:利用刚从register移出的字节和读入的新字节XOR从而产生定位下标,从table中取得相应的值。

3:把该值XOR到register中

4:如果还有未处理的数据则回到第一步继续执行。

我的学习笔记:

对这一算法我还是不太清楚,或许和XOR的性质有关,恳请大家指出为什么?

谢谢。

到这,我们对CRC32的算法原理和思想已经基本搞清了。下章,我想着重根据算法思想用java语言实现。

⑸ Md5 和 CRC32 的区别

crc32 — 计算一个字符串的 crc32 多项式
生成 string 参数的 32 位循环冗余校验码多项式……:
这句话从英文翻译过来的,不正确,准确的说应该是这么理解:
以32位循环冗余校验多项式算法,来计算一个字符串,返回一个(可能带符号的)整数。

使用方法:
这个函数的功能类似于md5算法、sha1算法加密。这个函数的使用过程中,需要多考虑取返回的整数的绝对值就可以了。
至于如何能做到检查传输的数据是否完整:
参考md5的常见使用场景。
32位循环冗余校验多项式:这个是一个数学算法,在php源码内可以看到。你可以当作他是一个md5算法的数字版。
MD5可靠性
首先是不可逆
其次,这个码具有高度的离散性,也就是说,原信息的一点点变化就会导致MD5的巨大变化,
最后由于这个码有128位那么长,所以任意信息之间具有相同MD5码的可能性非常之低,通常被认为是不可能的。
crc比较短,md5比较长
所以md5相对来说冲突的可能性要小很多
如果要求不高,是防范传输误码之类的用crc就可以了,crc效率要高很多
如果要防范人为恶意破坏,需要用md5,慢就慢点,图个可靠性加强

⑹ 谁能给个CRC32算法的简单介绍啊

CRC校验实用程序库 在数据存储和数据通讯领域,为了保证数据的正确,就不得不采用检错的手段。在诸多检错手段中,CRC是最着名的一种。CRC的全称是循环冗余校验,其特点是:检错能力极强,开销小,易于用编码器及检测电路实现。从其检错能力来看,它所不能发现的错误的几率仅为0.0047%以下。从性能上和开销上考虑,均远远优于奇偶校验及算术和校验等方式。因而,在数据存储和数据通讯领域,CRC无处不在:着名的通讯协议X.25的FCS(帧检错序列)采用的是CRC-CCITT,ARJ、LHA等压缩工具软件采用的是CRC32,磁盘驱动器的读写采用了CRC16,通用的图像存储格式GIF、TIFF等也都用CRC作为检错手段。
CRC的本质是模-2除法的余数,采用的除数不同,CRC的类型也就不一样。通常,CRC的除数用生成多项式来表示。最常用的CRC码的生成多项式如表1所示。
@@10A08800.GIF;表1.最常用的CRC码及生成多项式@@
由于CRC在通讯和数据处理软件中经常采用,笔者在实际工作中对其算法进行了研究和比较,总结并编写了一个具有最高效率的CRC通用程序库。该程序采用查表法计算CRC,在速度上优于一般的直接模仿硬件的算法,可以应用于通讯和数据压缩程序。
通常的CRC算法在计算一个数据段的CRC值时,其CRC值是由求解每个数值的CRC值的和对CRC寄存器的值反复更新而得到的。这样,求解CRC的速度较慢。通过对CRC算法的研究,我们发现:一个8位数据加到16位累加器中去,只有累加器的高8位或低8位与数据相作用,其结果仅有256种可能的组合值。因而,我们可以用查表法来代替反复的运算,这也同样适用于CRC32的计算。本文所提供的程序库中,函数crchware是一般的16位CRC的算法;mk-crctbl用以在内存中建立一个CRC数值表;crcupdate用以查表并更新CRC累加器的值;crcrevhware和crcrevupdate是反序算法的两个函数;BuildCRCTable、CalculateBlockCRC32和UpdateCharac
terCRC32用于CRC32的计算。
/* CRC.C——CRC程序库 */
#define CRCCCITT 0x1021
#define CCITT-REV 0x8408
#define CRC16 0x8005
#define CRC16-REV 0xA001
#define CRC32-POLYNOMIAL 0xEDB88320L
/* 以上为CRC除数的定义 */
#define NIL 0
#define crcupdate(d,a,t)*(a)=(*(a)<<8)^(t)[(*(a)>>8)^(d)];
#define crcupdate16(d,a,t)*(a)=(*(a)>>8^(t)[(*(a)^(d))&0x00ff])
/* 以上两个宏可以代替函数crcupdate和crcrevupdate */
#include<stdio.h>
#include<stdlib.h>
#include<alloc.h>
/* 函数crchware是传统的CRC算法,其返回值即CRC值 */
unsigned short crchware(data,genpoly,accum)
unsigned short data;/* 输入的数据 */
unsigned short genpoly;/* CRC除数 */
unsigned short accum;/* CRC累加器值 */
{
static int i;
data<<=8;
for(i=8;i>0;i--)
{
if((data^accum)&0x8000)
accum=(accum<<1)^genpoly;
else
accum<<=1;
data<<=1;
}
return (accum);
}
/* 函数mk-crctbl利用函数crchware建立内存中的CRC数值表 */
unsigned short *mk-crctbl(poly,crcfn);
unsigned short poly;/* CRC除数--CRC生成多项式 */

R>unsigned short (*crcfn)();/* 指向CRC函数(例如crchware)的指针 */
{
/* unsigned short */malloc(); */
unsigned short *crctp;
int i;
if((crctp=(unsigned short*)malloc(256*sizeof(unsigned)))==0)
return 0;
for(i=0;i<256;i++)
crctp[i]=(*crcfn)(i,poly,0);
return crctp;
}
/* 函数mk-crctbl的使用范例 */
if((crctblp=mk-crctbl(CRCCCITT,crchware))==NIL)
{
puts("insuff memory for CRC lookup table.\n");
return 1; */
/* 函数crcupdate用以用查表法计算CRC值并更新CRC累加器值 */
void crcupdate(data,accum,crctab)
unsigned short data;/* 输入的数据 */
unsigned short *accum;/* 指向CRC累加器的指针 */
unsigned short *crctab;/* 指向内存中CRC表的指针 */
{
static short comb-val;
comb-val=(*accum>>8)^data;
*accum=(*accum<<8)^crctab[comb-val];
}
/* 函数crcrevhware是传统的CRC算法的反序算法,其返回值即CRC值 */
unsigned short crcrevhware(data,genpoly,accum)
unsigned short data;
unsigned short genpoly;
unsigned short accum;
{
static int i;
data<<=1;
for(i=8;i>0;i--)
{
data>>=1;
if((data^accum)&0x0001)
accum=(accum>>1)^genpoly;
else
accum>>=1;
}
return accum;
}
/* 函数crcrevupdate用以用反序查表法计算CRC值并更新CRC累加器值 */
void crcrevupdate(data,accum,crcrevtab)
unsigned short data;
unsigned short *accum;DvNews

⑺ C#crc32的计算

天哪,我的老伙计,你想知道为什么要转成int,
真是见鬼,其实我也不太了解。
看在上帝的份儿上,我们为什么不坐下喝杯咖啡呢。
哦,我是说,你看这个函数的返回类型是int,
还有什么会比返回UInt32的时候编译器报错更令人烦躁的呢?

⑻ CRC32算法 寻求帮助帮助

MD5不是 只有知道密钥才能生成相同的信息摘要,是需要知道原数据才能生成相同的摘要(不过可以碰撞破解)。在信息安全上,MD5/SHA经常和RSA一起使用做数字签名。楼主说的一致性hash算法,估计是指Memcache等分布式KV数据库的一致性hash策略。

⑼ CRC8、CRC16、CRC32分别能最大计算多少位的校验码

CRC即循环冗余校验码(Cyclic Rendancy Check):是数据通信领域中最常用的一种差错校验码,其特征是信息字段和校验字段的长度可以任意选定。循环冗余检查(CRC)是一种数据传输检错功能,对数据进行多项式计算,并将得到的结果附在帧的后面,接收设备也执行类似的算法,以保证数据传输的正确性和完整性 查看原帖>>

⑽ CRC32的算法

通常的CRC算法在计算一个数据段的CRC值时,其CRC值是由求解每个数值的CRC值的和对CRC寄存器的值反复更新而得到的。这样,求解CRC的速度较慢。通过对CRC算法的研究,我们发现:一个8位数据加到16位累加器中去,只有累加器的高8位或低8位与数据相作用,其结果仅有256种可能的组合值。因而,我们可以用查表法来代替反复的运算,这也同样适用于CRC32的计算。本文所提供的程序库中,函数crchware是一般的16位CRC的算法;mk-crctbl用以在内存中建立一个CRC数值表;crcupdate用以查表并更新CRC累加器的值;crcrevhware和crcrevupdate是反序算法的两个函数;BuildCRCTable、CalculateBlockCRC32和UpdateCharac
terCRC32用于CRC32的计算。 /*CRC.C——CRC程序库*/#defineCRCCCITT0x1021#defineCCITT-REV0x8408#defineCRC160x8005#defineCRC16-REV0xA001#defineCRC32-POLYNOMIAL0xEDB88320L/*以上为CRC除数的定义*/#defineNIL0#definecrcupdate(d,a,t)*(a)=(*(a)<<8)^(t)[(*(a)>>8)^(d)];#definecrcupdate16(d,a,t)*(a)=(*(a)>>8^(t)[(*(a)^(d))&0x00ff])/*以上两个宏可以代替函数crcupdate和crcrevupdate*/#include<stdio.h>#include<stdlib.h>#include<alloc.h>/*函数crchware是传统的CRC算法,其返回值即CRC值*/unsignedshortcrchware(data,genpoly,accum)unsignedshortdata;/*输入的数据*/unsignedshortgenpoly;/*CRC除数*/unsignedshortaccum;/*CRC累加器值*/{staticinti;data<<=8;for(i=8;i>0;i--){if((data^accum)&0x8000)accum=(accum<<1)^genpoly;elseaccum<<=1;data<<=1;}return(accum);}/*函数mk-crctbl利用函数crchware建立内存中的CRC数值表*/unsignedshort*mk-crctbl(poly,crcfn);unsignedshortpoly;/*CRC除数--CRC生成多项式*/R>unsignedshort(*crcfn)();/*指向CRC函数(例如crchware)的指针*/{/*unsignedshort*/malloc();*/unsignedshort*crctp;inti;if((crctp=(unsignedshort*)malloc(256*sizeof(unsigned)))==0)return0;for(i=0;i<256;i++)crctp=(*crcfn)(i,poly,0);returncrctp;}/*函数mk-crctbl的使用范例*/if((crctblp=mk-crctbl(CRCCCITT,crchware))==NIL){puts(insuffmemoryforCRClookuptable.n);return1;*//*函数crcupdate用以用查表法计算CRC值并更新CRC累加器值*/voidcrcupdate(data,accum,crctab)unsignedshortdata;/*输入的数据*/unsignedshort*accum;/*指向CRC累加器的指针*/unsignedshort*crctab;/*指向内存中CRC表的指针*/{staticshortcomb-val;comb-val=(*accum>>8)^data;*accum=(*accum<<8)^crctab[comb-val];}/*函数crcrevhware是传统的CRC算法的反序算法,其返回值即CRC值*/unsignedshortcrcrevhware(data,genpoly,accum)unsignedshortdata;unsignedshortgenpoly;unsignedshortaccum;{staticinti;data<<=1;for(i=8;i>0;i--){data>>=1;if((data^accum)&0x0001)accum=(accum>>1)^genpoly;elseaccum>>=1;}returnaccum;}/*函数crcrevupdate用以用反序查表法计算CRC值并更新CRC累加器值*/voidcrcrevupdate(data,accum,crcrevtab)unsignedshortdata;unsignedshort*accum;DvNews2.
crc32 — 计算一个字符串的 crc32 多项式

热点内容
单片机android 发布:2024-09-20 09:07:24 浏览:760
如何提高三星a7安卓版本 发布:2024-09-20 08:42:35 浏览:661
如何更换服务器网站 发布:2024-09-20 08:42:34 浏览:308
子弹算法 发布:2024-09-20 08:41:55 浏览:286
手机版网易我的世界服务器推荐 发布:2024-09-20 08:41:52 浏览:814
安卓x7怎么边打游戏边看视频 发布:2024-09-20 08:41:52 浏览:160
sql数据库安全 发布:2024-09-20 08:31:32 浏览:91
苹果连接id服务器出错是怎么回事 发布:2024-09-20 08:01:07 浏览:505
编程键是什么 发布:2024-09-20 07:52:47 浏览:655
学考密码重置要求的证件是什么 发布:2024-09-20 07:19:46 浏览:479