当前位置:首页 » 操作系统 » id3算法

id3算法

发布时间: 2022-01-20 03:31:38

㈠ id3算法产生的一定是二叉树吗

ID3(IterativeDichotomiser3)生成树的时候,是选择具有最大信息增益的那个特征作为树的根节点,其子节点分别是根节点特征的不同取值。显然,特征的取值可以是两个,也可以是多个,所以可以知道ID3产生的树不一定是二叉树。可以在周志华《机器学习》77页的图示看到一颗ID3产生的多叉树。

㈡ 数据挖掘ID3算法有一些不懂

十经典算: 我看谭磊本书 面网站给答案: 1. C4.5 C4.5算机器习算种类决策树算,其核算ID3算. C4.5算继承ID3算优点并几面ID3算进行改进: 1) 用信息增益率选..

㈢ 有关ID3算法判定树的翻译

本文就基于决策树的分类系统进行了说明,主要介绍了根据决策树算法中的ID3算法,利用开发工具Visual C++ 6.0完成系统的方法。首先介绍了机器学习、归纳学习、决策树学习等方面的相关背景。接着详细介绍了决策树,ID3算法的理论知识,包括信息熵知识,算法原理,以及分析了ID3算法的优劣。本文针对本系统的实际情况,详细的介绍了系统中的各模块和实现方法,以及系统功能的全过程。
另外,本文还比较详细的介绍了系统开发工具Visual C++ 6.0,从实现本系统的角度,对涉及的相关内容进行了介绍。通过对系统不同实验数据的实验结果的分析,直观的显示了系统能够完成的所有功能。文章的最后做出了总体上的结论,并指出了本分类系统的存在的许多不足之处,这也为以后的进一步研究奠定了基础。

㈣ 简述ID3算法基本原理和步骤

1.基本原理:
以信息增益/信息熵为度量,用于决策树结点的属性选择的标准,每次优先选取信息量最多(信息增益最大)的属性,即信息熵值最小的属性,以构造一颗熵值下降最快的决策树,到叶子节点处的熵值为0。(信息熵 无条件熵 条件熵 信息增益 请查找其他资料理解)
决策树将停止生长条件及叶子结点的类别取值:
①数据子集的每一条数据均已经归类到每一类,此时,叶子结点取当前样本类别值。
②数据子集类别仍有混乱,但已经找不到新的属性进行结点分解,此时,叶子结点按当前样本中少数服从多数的原则进行类别取值。
③数据子集为空,则按整个样本中少数服从多数的原则进行类别取值。

步骤:
理解了上述停止增长条件以及信息熵,步骤就很简单

㈤ ID3算法的简介,要通俗易懂的,最好能让没有任何基础的人理解

http://www.rulequest.com/download.html
http://www.rulequest.com/See5-demo.zip
这里有些。
Diversity(整体)-diversity(左节点)-diversity(右节点),值越大,分割就越好。

三种diversity的指标:

1. min(P(c1),P(c2))

2. 2P(c1)P(c2)

3. [P(c1)logP(c1)]+[P(c2)logP(c2)]

这几个参数有相同的性质:当其中的类是均匀分布的时候,值最大;当有一个类的个数为0的时候,值为0。

选择分割的时候,对每个字段都考虑;对每个字段中的值先排序,然后再一一计算。最后选出最佳的分割。

树的生成:

错误率的衡量:最初生成的树中也是有错误率的!因为有些叶子节点并不是“Pure”的。

树的修剪:是不是当所以的叶子都很纯是,这棵树就能工作的很好呢?

修剪的要点是:应该回溯多少、如何从众多的子树总寻找最佳的。

1) 鉴别生成候选子树 :使用一个调整的错误率。AE(T)=E(T)+aleaf_count(T)。一步步的生成一些候选子树。

2) 对子树的评估:通过test set找到最佳子树

3) 对最佳子树�衅拦溃菏褂胑valuation set。

4) 考虑代价(cost)的问题

㈥ ID3算法的ID3算法

ID3算法是由Quinlan首先提出的。该算法是以信息论为基础,以信息熵和信息增益度为衡量标准,从而实现对数据的归纳分类。以下是一些信息论的基本概念:
定义1:若存在n个相同概率的消息,则每个消息的概率p是1/n,一个消息传递的信息量为-Log2(1/n)
定义2:若有n个消息,其给定概率分布为P=(p1,p2…pn),则由该分布传递的信息量称为P的熵,记为

定义3:若一个记录集合T根据类别属性的值被分成互相独立的类C1C2..Ck,则识别T的一个元素所属哪个类所需要的信息量为Info(T)=I(p),其中P为C1C2…Ck的概率分布,即P=(|C1|/|T|,…..|Ck|/|T|)
定义4:若我们先根据非类别属性X的值将T分成集合T1,T2…Tn,则确定T中一个元素类的信息量可通过确定Ti的加权平均值来得到,即Info(Ti)的加权平均值为:
Info(X, T)=(i=1 to n 求和)((|Ti|/|T|)Info(Ti))
定义5:信息增益度是两个信息量之间的差值,其中一个信息量是需确定T的一个元素的信息量,另一个信息量是在已得到的属性X的值后需确定的T一个元素的信息量,信息增益度公式为:
Gain(X, T)=Info(T)-Info(X, T)
ID3算法计算每个属性的信息增益,并选取具有最高增益的属性作为给定集合的测试属性。对被选取的测试属性创建一个节点,并以该节点的属性标记,对该属性的每个值创建一个分支据此划分样本.
数据描述
所使用的样本数据有一定的要求,ID3是:
描述-属性-值相同的属性必须描述每个例子和有固定数量的价值观。
预定义类-实例的属性必须已经定义的,也就是说,他们不是学习的ID3。
离散类-类必须是尖锐的鲜明。连续类分解成模糊范畴(如金属被“努力,很困难的,灵活的,温柔的,很软”都是不可信的。
足够的例子——因为归纳概括用于(即不可查明)必须选择足够多的测试用例来区分有效模式并消除特殊巧合因素的影响。
属性选择
ID3决定哪些属性如何是最好的。一个统计特性,被称为信息增益,使用熵得到给定属性衡量培训例子带入目标类分开。信息增益最高的信息(信息是最有益的分类)被选择。为了明确增益,我们首先从信息论借用一个定义,叫做熵。每个属性都有一个熵。

㈦ ID3算法的背景知识

ID3算法最早是由罗斯昆(J. Ross Quinlan)于1975年在悉尼大学提出的一种分类预测算法,算法的核心是“信息熵”。ID3算法通过计算每个属性的信息增益,认为信息增益高的是好属性,每次划分选取信息增益最高的属性为划分标准,重复这个过程,直至生成一个能完美分类训练样例的决策树。
决策树是对数据进行分类,以此达到预测的目的。该决策树方法先根据训练集数据形成决策树,如果该树不能对所有对象给出正确的分类,那么选择一些例外加入到训练集数据中,重复该过程一直到形成正确的决策集。决策树代表着决策集的树形结构。
决策树由决策结点、分支和叶子组成。决策树中最上面的结点为根结点,每个分支是一个新的决策结点,或者是树的叶子。每个决策结点代表一个问题或决策,通常对应于待分类对象的属性。每一个叶子结点代表一种可能的分类结果。沿决策树从上到下遍历的过程中,在每个结点都会遇到一个测试,对每个结点上问题的不同的测试输出导致不同的分支,最后会到达一个叶子结点,这个过程就是利用决策树进行分类的过程,利用若干个变量来判断所属的类别。

㈧ 为什么叫id3算法,id3全称是什么input dataset

Iterative Dichotomiser 3 迭代二叉树3代

㈨ ID3算法的介绍

ID3算法是一种贪心算法,用来构造决策树。ID3算法起源于概念学习系统(CLS),以信息熵的下降速度为选取测试属性的标准,即在每个节点选取还尚未被用来划分的具有最高信息增益的属性作为划分标准,然后继续这个过程,直到生成的决策树能完美分类训练样例。

热点内容
易语言调用c语言dll 发布:2025-01-15 10:04:42 浏览:571
我的世界网易版有没有纯生存的服务器 发布:2025-01-15 10:04:35 浏览:492
c语言变量赋值 发布:2025-01-15 09:54:15 浏览:940
经典实用算法 发布:2025-01-15 09:52:52 浏览:622
xp电脑代理服务器在哪 发布:2025-01-15 09:52:51 浏览:915
laravel上传类型 发布:2025-01-15 09:39:55 浏览:544
怎么看wifi万能钥匙密码是什么 发布:2025-01-15 09:35:09 浏览:602
怎么调好一个服务器 发布:2025-01-15 09:34:59 浏览:403
java流程控制 发布:2025-01-15 09:33:32 浏览:304
讯飞语音源码 发布:2025-01-15 09:26:04 浏览:793