当前位置:首页 » 操作系统 » 时间序列算法

时间序列算法

发布时间: 2022-01-18 23:56:05

1. 时间序列 是 数据挖掘的一种 算法


所有统计学的方法 都是数据挖掘的一种算法,当然数据挖掘是一个交叉学科,融合了各个学科领域的多种算法。

2. 时间序列分析ARIMA算法中求差分的目的是什么

差分目的是使因变量序列平稳,序列平稳是做ARIMA回归的前提条件。
差分一般不做大于2阶的,在第一次差分后就要检验平稳性,若通过平稳性检验,则可停止进行进一步差分。

3. 时间序列分割问题

1、序列分割是为了对序列更好的处理。一个太长的序列在进行相应的处理时,比如说提取关键信息(趋势,均值之类的等等)带来诸多不便,而且对序列的信息描述不准确。
2、这方面的算法也有不少,我记得的有平均分段、基于极大值极小值的分段、基于关键点的分段、基于滑动窗口的分段等。算法的具体实现你在网上找些资料看看就行了。
3、学习资料这方面呢,你先看些基础的东西,比如说时间序列的一些常用方法、一元序列和多元序列的区别等,当然了,对时间序列诸如遵循正态分布的这样一些基本特性也要知道(其实这些在时间序列相关的综述论文都有提到,多看几篇论文就明白了)。然后,分别从一元到多元深入地学习,比如说和DTW有关的算法、分层算法、与时间粒度有关的算法、奇异值分解、主成分分析等等,相应的算法先多看几篇论文,然后再到网上找些相应的程序看看。

4. 时间序列分析预测法优缺点

优点:可以从时间序列中找出变量变化的特征、趋势以及发展规律,从而对变量的未来变化进行有效地预测。

缺点:在应用时间序列分析法进行市场预测时应注意市场现象未来发展变化规律和发展水平,不一定与其历史和现在的发展变化规律完全一致。间序列预测法因突出时间序列暂不考虑外界因素影响,因而存在着预测误差的缺陷,当遇到外界发生较大变化,往往会有较大偏差。

其基本特征:

1、趋势性:某个变量随着时间进展或自变量变化,呈现一种比较缓慢而长期的持续上升、下降、停留的同性质变动趋向,但变动幅度可能不相等。

2、周期性:某因素由于外部影响随着自然季节的交替出现高峰与低谷的规律。

3、随机性:个别为随机变动,整体呈统计规律。

4、综合性:实际变化情况是几种变动的叠加或组合。预测时设法过滤除去不规则变动,突出反映趋势性和周期性变动。

5. 以下哪个是常见的时间序列算法模型

http://blog.csdn.net/ztf312/article/details/50890267

6. 时间序列的各个模型有什么区别和应用

时间序列模型是指采用某种算法(可以是神经网络、ARMA等)模拟历史数据,找出其中的变化规律,神经网络模型是一种算法,可以用于分类、聚类、预测等等不用领域;两者一个是问题模型,一个是算法模型

7. 用时间序列的知识回答简述如何检验一个模型的有效性

为了得到正确的结论、在进行系统分析、预测和辅助决策时,必须保证模型能够准确地反映实际系统并能在计算机上正确运行.因此,必须对模型的有效性进行评估.模型有效性评估主要包括模型确认和模型验证两部分内容:模型确认考察的是系统模型(所建立的模型)与被仿真系统(研究对象)之间的关系,模型验证考察的则是系统模型与模型计算机实现之间的关系.
对于一个具体的建模项目来说,模型有效性评估贯穿于研究的始终.必须指出,模型实际上是所研究的系统的一种抽象表述形式,要验证一个模型是否百分之百有效是极其困难的,也是没有实际意义的.另外,模型是否有效是相对于研究目的以及用户需求而言的.在某些情况下,模型达到60%的可信度使可满足要求;而在另外一些情况下,模型达到99%都可能是不满足的.
模型有效性的概念出现在20世纪60年代,随着计算机仿真技术在各个学科和工程领域的普遍应用,模型有效性问题日益受到人们的关注. 1967年,美国兰德公司的fishman和Kivtat明确指出,模型有效性研究可划分为两个部分:模型的确认(validation)和验证(verification).这一观点被国际仿真学界普遍采纳.模型确认指通过比较在相同输入条判和运行环境下模型与实际系统输出之间的一致性,评价模型的可信度或可用性.模型验证则是判断模型的计算机实现是否正确.
尽管确认和验证在各文献中的定义不尽相同,但对于二者之间的区别,专家的看法却是基本一致的.简单地说,模型确认强调理论模型与实际系统之间的一致性,模型验证则强调当前模型与计算机程序之间的一致性.在有些文献中也采用工程技术人员容易接受的“校模”和“验模”两个术语来分别代替“确认”和“验证”.模型的确认和验证与建模的关系见图 8.5.
在图 8.5中,“问题实体”指被建模的对象,如系统、观念、政策、现象等.“理论模型”是为达到某种特定的研究目的而对问题实体进行的数学/逻辑描述.“计算机模型”(computerized Model)是理论模型在计算机上的实现.
通过“分析与建模”活动可以建立理论模型.计算机模型的建立需通过“编程及实现”这一步骤来完成.经过仿真“实验”即可得到关于问题实体的结果.
模型确认包括理论模型有效性确认、数据有效性确认和运行有效性确认三部分内容,其中运行有效性确认是模型确认的核心.
图 8.5 确认和验证与建模的关系
1)理论模型有效性确认
理论模型有效性确认是对理论模型中采用的理论依据和假设条件的正确性以及理论模型对问题实体描述的合理性加以证实的过程.理论模型有效性确认包括两项内容:
(1)检验模型的理论依据及假设条件的正确性.它具有两个含义,一是检验理论依据的应用条件是否满足,如线性、正态性、独立性、静态性等;该检验过程可以利用统计方法进行.二是检验各种理论的应用是否正确.
(2)子模型的划分及其与总模型的关系是否合理,即分析模型的结构是否正确,子模型问的数学/逻辑关系是否与问题实体相符.理论模型经确认有效后,才能对其进行试运行.最后根据输出结果评估模型的精度.若理论模型无效,应重复分析、建模及确认的过程.
2)数据有效性确认
数据有效性确认用于保证模型建立、评估、检验和实验所用的数据是充分的和正确的.
在模型开发过程中,数据用于模型的建立、校验和运行.充分、正确、精确的数据是建立模型的基础.数据有效性确认包括对模型中关键变量、关键参数及随机变量的确认,以及对运行有效性确认时所使用的参数和初始值等数据的确认.
3)运行有效性确认
运行有效性确认指就模型开发目的或用途而言,模型在其预期应用范围内的输出行为是否有足够的精度.
运行有效性确认的目的是对模型输出结果的精度进行计算和评估.其前提是实际系统及其可比系统的数据均可获取.通过比较模型和实际系统在相同初始条件下的输出数据,可对模型有效性进行定量分析.与实际系统相类似的系统,确认为有效的解析模型、工程计算模型、以及经过确认的模型都可作为模型的可比系统.
理论模型确认、数据有效性确认及模型验证是运行有效性确认的前提.经运行有效性确认被认为有效的模型即可作为正式模型投入运行,利用它进行实际问题的研究.若模型在运行有效性确认时被确认为无效,其原因可能是理论模型不正确、或计算机模型不正确,也可能是数据无效.具体原因的查明需从分析与建模阶段开始,重复模型的构造过程.若实际系统及其可比系统不存在或完全不可观测,则模型与系统的输出数据无法进行比较.在这种情况下,一般只能通过模型验证和理论模型确认,定性地分析模型的有效性.
理论模型有效性包括:1)表观确认,分析对与模型有关的所有信息进行评估,确定需要附加分析的内容,以提高模型的可信度水平;2)历史分析,对与模型有关的历史信息的评估,以评价模型对预期应用的适宜性.3)预期应用和需求分析,对预期应用的效果进行评估,以确定那些对资源的有效利用起关键作用的需求.4)模型概念和逼真度分析,对模型的算法和子模型进行评估,以辨识那些不适用的假设,并确定子模型的逼真度是否能保证模型的预期应用.5)逻辑追踪分析,通过模型逻辑评估模型中指定实体的行为,并确定这些行为是否都是所期望的.

8. 时间序列预测方法有哪些分类,分别适合使用的情况是

时间序列预测方法根据对资料分析方法的不同,可分为:简单序时平均数法、加权序时平均数法、移动平均法、加权移动平均法、趋势预测法、指数平滑法、季节性趋势预测法、市场寿命周期预测法等。

1、简单序时平均数法只能适用于事物变化不大的趋势预测。如果事物呈现某种上升或下降的趋势,就不宜采用此法。

2、加权序时平均数法就是把各个时期的历史数据按近期和远期影响程度进行加权,求出平均值,作为下期预测值。

3、简单移动平均法适用于近期期预测。当产品需求既不快速增长也不快速下降,且不存在季节性因素时,移动平均法能有效地消除预测中的随机波动。

4、加权移动平均法即将简单移动平均数进行加权计算。在确定权数时,近期观察值的权数应该大些,远期观察值的权数应该小些。

5、指数平滑法即根用于中短期经济发展趋势预测,所有预测方法中,指数平滑是用得最多的一种。

6、季节趋势预测法根据经济事物每年重复出现的周期性季节变动指数,预测其季节性变动趋势。

7、市场寿命周期预测法,适用于对耐用消费品的预测。这种方法简单、直观、易于掌握。

(8)时间序列算法扩展阅读:

时间序列预测法的特征

1、时间序列分析法是根据过去的变化趋势预测未来的发展,前提是假定事物的过去延续到未来。运用过去的历史数据,通过统计分析,进一步推测未来的发展趋势。不会发生突然的跳跃变化,是以相对小的步伐前进;过去和当前的现象,可能表明现在和将来活动的发展变化趋向。

2.时间序列数据变动存在着规律性与不规律性

时间序列中的每个观察值大小,是影响变化的各种不同因素在同一时刻发生作用的综合结果。从这些影响因素发生作用的大小和方向变化的时间特性来看,这些因素造成的时间序列数据的变动分为四种类型:趋势性、周期性、随机性、综合性。

热点内容
linux是免费的吗 发布:2024-11-15 15:53:44 浏览:616
多控存储 发布:2024-11-15 15:52:42 浏览:282
一年级数学分解算法 发布:2024-11-15 15:41:08 浏览:410
安卓个人热点怎么分享 发布:2024-11-15 15:40:16 浏览:263
垫钱解压 发布:2024-11-15 15:38:54 浏览:335
miui4相当于安卓什么系统 发布:2024-11-15 15:37:54 浏览:708
rc4android 发布:2024-11-15 15:27:25 浏览:741
电脑服务器机箱图片 发布:2024-11-15 15:27:18 浏览:114
网页缓存文件提取 发布:2024-11-15 15:24:42 浏览:144
sqlserver提高 发布:2024-11-15 15:24:40 浏览:659