当前位置:首页 » 操作系统 » 算法模式

算法模式

发布时间: 2022-01-17 06:39:57

❶ 设计模式与算法有什么区别请详细说明一下

设计模式通常是把再开发中经常用到的程序进行抽象形成一种框架,便于以后类似情况时候的使用,是设计简化; 算法是某一种计算方式的抽象,通常是为了得到某一结果而进行的,而得到这个结果可能有很多途径,每一种途径可能都可以抽象成一种算法。

❷ 对称加密算法的应用模式

加密模式(英文名称及简写) 中文名称 Electronic Code Book(ECB) 电子密码本模式 Cipher Block Chaining(CBC) 密码分组链接模式 Cipher Feedback Mode(CFB) 加密反馈模式 Output Feedback Mode(OFB) 输出反馈模式 ECB:最基本的加密模式,也就是通常理解的加密,相同的明文将永远加密成相同的密文,无初始向量,容易受到密码本重放攻击,一般情况下很少用。
CBC:明文被加密前要与前面的密文进行异或运算后再加密,因此只要选择不同的初始向量,相同的密文加密后会形成不同的密文,这是目前应用最广泛的模式。CBC加密后的密文是上下文相关的,但明文的错误不会传递到后续分组,但如果一个分组丢失,后面的分组将全部作废(同步错误)。
CFB:类似于自同步序列密码,分组加密后,按8位分组将密文和明文进行移位异或后得到输出同时反馈回移位寄存器,优点最小可以按字节进行加解密,也可以是n位的,CFB也是上下文相关的,CFB模式下,明文的一个错误会影响后面的密文(错误扩散)。
OFB:将分组密码作为同步序列密码运行,和CFB相似,不过OFB用的是前一个n位密文输出分组反馈回移位寄存器,OFB没有错误扩散问题。

❸ 算法怎么学

我学习算法的目的有两点:1)兴趣,算法比较有意思,比起做那些无聊的项目有意思多了;2)工作需要,我将来第一份工作很定是从事软件开发,了解常见算法
和数据结构是必须的。我一直没有参加我们学校的ACM队,因为个人认为功利性太重,并且训练方式还是像高中一样的题海战术,我不太喜欢这种学习模式,这种
类似于高中的学习方式,我不是太喜欢。可能我对我们学校ACM队理解得比较片面。不过参加ACM也有好处,可以认识很多大牛。 据我在网上了解到,学习算法需要一些数学知识做为铺垫,如数论,组合数学,图论等等。这里提到的每一个都可以写一本很厚很厚的书。我没有必要将这
些东西研究的十分透彻,那是数学家的事情。我只需要了解里面的一些十分常见的概念、定理就可以了,以方便算法学习时知道是什么。 所以,希望大家介绍几本好书(如《算法导论》),交流一下大家学习算法的经验。我不求在短时间内突飞猛进,只求有一种好的方法长期积累。

❹ aes加密算法有多少种模式

一般的加密通常都是块加密,如果要加密超过块大小的数据,就需要涉及填充和链加密模式,文中提到的ECB和CBC等就是指链加密模式。这篇文档比较形象地介绍了AES加密算法中的一些模式转载过来。注意,还缺一种CTR的模式。

同时在文章的最后,贴出几对利用ECB and CBC模式得标准算法得到的码流串。

对称加密和分组加密中的四种模式(ECB、CBC、CFB、OFB)

❺ 算法与设计模式有什么关系吗

大学里还教设计模式?一般大学里只教你基本的数据结构和算法。设计模式以前是不教的,现在我不清楚。

❻ 简述算法的各种表示形式

一、什么是算法

算法是一系列解决问题的清晰指令,也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。算法常常含有重复的步骤和一些比较或逻辑判断。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。

算法的时间复杂度是指算法需要消耗的时间资源。一般来说,计算机算法是问题规模n 的函数f(n),算法执行的时间的增长率与f(n) 的增长率正相关,称作渐进时间复杂度(Asymptotic Time Complexity)。时间复杂度用“O(数量级)”来表示,称为“阶”。常见的时间复杂度有: O(1)常数阶;O(log2n)对数阶;O(n)线性阶;O(n2)平方阶。

算法的空间复杂度是指算法需要消耗的空间资源。其计算和表示方法与时间复杂度类似,一般都用复杂度的渐近性来表示。同时间复杂度相比,空间复杂度的分析要简单得多。

二、算法设计的方法

1.递推法

递推法是利用问题本身所具有的一种递推关系求问题解的一种方法。设要求问题规模为N的解,当N=1时,解或为已知,或能非常方便地得到解。能采用递推法构造算法的问题有重要的递推性质,即当得到问题规模为i-1的解后,由问题的递推性质,能从已求得的规模为1,2,…,i-1的一系列解,构造出问题规模为I的解。这样,程序可从i=0或i=1出发,重复地,由已知至i-1规模的解,通过递推,获得规模为i的解,直至得到规模为N的解。

【问题】 阶乘计算

问题描述:编写程序,对给定的n(n≤100),计算并输出k的阶乘k!(k=1,2,…,n)的全部有效数字。

由于要求的整数可能大大超出一般整数的位数,程序用一维数组存储长整数,存储长整数数组的每个元素只存储长整数的一位数字。如有m位成整数N用数组a[ ]存储:

N=a[m]×10m-1+a[m-1]×10m-2+ … +a[2]×101+a[1]×100

并用a[0]存储长整数N的位数m,即a[0]=m。按上述约定,数组的每个元素存储k的阶乘k!的一位数字,并从低位到高位依次存于数组的第二个元素、第三个元素……。例如,5!=120,在数组中的存储形式为:

3 0 2 1 ……

首元素3表示长整数是一个3位数,接着是低位到高位依次是0、2、1,表示成整数120。

计算阶乘k!可采用对已求得的阶乘(k-1)!连续累加k-1次后求得。例如,已知4!=24,计算5!,可对原来的24累加4次24后得到120。细节见以下程序。

# include <stdio.h>

# include <malloc.h>

# define MAXN 1000

void pnext(int a[ ],int k)

{ int *b,m=a[0],i,j,r,carry;

b=(int * ) malloc(sizeof(int)* (m+1));

for ( i=1;i<=m;i++) b[i]=a[i];

for ( j=1;j<=k;j++)

{ for ( carry=0,i=1;i<=m;i++)

{ r=(i<a[0]?a[i]+b[i]:a[i])+carry;

a[i]=r%10;

carry=r/10;

}

if (carry) a[++m]=carry;

}

free(b);

a[0]=m;

}

void write(int *a,int k)

{ int i;

printf(“%4d!=”,k);

for (i=a[0];i>0;i--)

printf(“%d”,a[i]);

printf(“\n\n”);

}

void main()

{ int a[MAXN],n,k;

printf(“Enter the number n: “);

scanf(“%d”,&n);

a[0]=1;

a[1]=1;

write(a,1);

for (k=2;k<=n;k++)

{ pnext(a,k);

write(a,k);

getchar();

}

}

2.递归

递归是设计和描述算法的一种有力的工具,由于它在复杂算法的描述中被经常采用,为此在进一步介绍其他算法设计方法之前先讨论它。

能采用递归描述的算法通常有这样的特征:为求解规模为N的问题,设法将它分解成规模较小的问题,然后从这些小问题的解方便地构造出大问题的解,并且这些规模较小的问题也能采用同样的分解和综合方法,分解成规模更小的问题,并从这些更小问题的解构造出规模较大问题的解。特别地,当规模N=1时,能直接得解。

【问题】 编写计算斐波那契(Fibonacci)数列的第n项函数fib(n)。

斐波那契数列为:0、1、1、2、3、……,即:

fib(0)=0;

fib(1)=1;

fib(n)=fib(n-1)+fib(n-2) (当n>1时)。

写成递归函数有:

int fib(int n)

{ if (n==0) return 0;

if (n==1) return 1;

if (n>1) return fib(n-1)+fib(n-2);

}

递归算法的执行过程分递推和回归两个阶段。在递推阶段,把较复杂的问题(规模为n)的求解推到比原问题简单一些的问题(规模小于n)的求解。例如上例中,求解fib(n),把它推到求解fib(n-1)和fib(n-2)。也就是说,为计算fib(n),必须先计算fib(n-1)和fib(n-2),而计算fib(n-1)和fib(n-2),又必须先计算fib(n-3)和fib(n-4)。依次类推,直至计算fib(1)和fib(0),分别能立即得到结果1和0。在递推阶段,必须要有终止递归的情况。例如在函数fib中,当n为1和0的情况。

在回归阶段,当获得最简单情况的解后,逐级返回,依次得到稍复杂问题的解,例如得到fib(1)和fib(0)后,返回得到fib(2)的结果,……,在得到了fib(n-1)和fib(n-2)的结果后,返回得到fib(n)的结果。

在编写递归函数时要注意,函数中的局部变量和参数知识局限于当前调用层,当递推进入“简单问题”层时,原来层次上的参数和局部变量便被隐蔽起来。在一系列“简单问题”层,它们各有自己的参数和局部变量。

由于递归引起一系列的函数调用,并且可能会有一系列的重复计算,递归算法的执行效率相对较低。当某个递归算法能较方便地转换成递推算法时,通常按递推算法编写程序。例如上例计算斐波那契数列的第n项的函数fib(n)应采用递推算法,即从斐波那契数列的前两项出发,逐次由前两项计算出下一项,直至计算出要求的第n项。

【问题】 组合问题

问题描述:找出从自然数1、2、……、n中任取r个数的所有组合。例如n=5,r=3的所有组合为: (1)5、4、3 (2)5、4、2 (3)5、4、1

(4)5、3、2 (5)5、3、1 (6)5、2、1

(7)4、3、2 (8)4、3、1 (9)4、2、1

(10)3、2、1

分析所列的10个组合,可以采用这样的递归思想来考虑求组合函数的算法。设函数为void comb(int m,int k)为找出从自然数1、2、……、m中任取k个数的所有组合。当组合的第一个数字选定时,其后的数字是从余下的m-1个数中取k-1数的组合。这就将求m个数中取k个数的组合问题转化成求m-1个数中取k-1个数的组合问题。设函数引入工作数组a[ ]存放求出的组合的数字,约定函数将确定的k个数字组合的第一个数字放在a[k]中,当一个组合求出后,才将a[ ]中的一个组合输出。第一个数可以是m、m-1、……、k,函数将确定组合的第一个数字放入数组后,有两种可能的选择,因还未去顶组合的其余元素,继续递归去确定;或因已确定了组合的全部元素,输出这个组合。细节见以下程序中的函数comb。

【程序】

# include <stdio.h>

# define MAXN 100

int a[MAXN];

void comb(int m,int k)

{ int i,j;

for (i=m;i>=k;i--)

{ a[k]=i;

if (k>1)

comb(i-1,k-1);

else

{ for (j=a[0];j>0;j--)

printf(“%4d”,a[j]);

printf(“\n”);

}

}

}

void main()

{ a[0]=3;

comb(5,3);

}

3.回溯法

回溯法也称为试探法,该方法首先暂时放弃关于问题规模大小的限制,并将问题的候选解按某种顺序逐一枚举和检验。当发现当前候选解不可能是解时,就选择下一个候选解;倘若当前候选解除了还不满足问题规模要求外,满足所有其他要求时,继续扩大当前候选解的规模,并继续试探。如果当前候选解满足包括问题规模在内的所有要求时,该候选解就是问题的一个解。在回溯法中,放弃当前候选解,寻找下一个候选解的过程称为回溯。扩大当前候选解的规模,以继续试探的过程称为向前试探。

【问题】 组合问题

问题描述:找出从自然数1,2,…,n中任取r个数的所有组合。

采用回溯法找问题的解,将找到的组合以从小到大顺序存于a[0],a[1],…,a[r-1]中,组合的元素满足以下性质:

(1) a[i+1]>a[i],后一个数字比前一个大;

(2) a[i]-i<=n-r+1。

按回溯法的思想,找解过程可以叙述如下:

首先放弃组合数个数为r的条件,候选组合从只有一个数字1开始。因该候选解满足除问题规模之外的全部条件,扩大其规模,并使其满足上述条件(1),候选组合改为1,2。继续这一过程,得到候选组合1,2,3。该候选解满足包括问题规模在内的全部条件,因而是一个解。在该解的基础上,选下一个候选解,因a[2]上的3调整为4,以及以后调整为5都满足问题的全部要求,得到解1,2,4和1,2,5。由于对5不能再作调整,就要从a[2]回溯到a[1],这时,a[1]=2,可以调整为3,并向前试探,得到解1,3,4。重复上述向前试探和向后回溯,直至要从a[0]再回溯时,说明已经找完问题的全部解。按上述思想写成程序如下:

【程序】

# define MAXN 100

int a[MAXN];

void comb(int m,int r)

{ int i,j;

i=0;

a[i]=1;

do {

if (a[i]-i<=m-r+1

{ if (i==r-1)

{ for (j=0;j<r;j++)

printf(“%4d”,a[j]);

printf(“\n”);

}

a[i]++;

continue;

}

else

{ if (i==0)

return;

a[--i]++;

}

} while (1)

}

main()

{ comb(5,3);

}

4.贪婪法

贪婪法是一种不追求最优解,只希望得到较为满意解的方法。贪婪法一般可以快速得到满意的解,因为它省去了为找最优解要穷尽所有可能而必须耗费的大量时间。贪婪法常以当前情况为基础作最优选择,而不考虑各种可能的整体情况,所以贪婪法不要回溯。

例如平时购物找钱时,为使找回的零钱的硬币数最少,不考虑找零钱的所有各种发表方案,而是从最大面值的币种开始,按递减的顺序考虑各币种,先尽量用大面值的币种,当不足大面值币种的金额时才去考虑下一种较小面值的币种。这就是在使用贪婪法。这种方法在这里总是最优,是因为银行对其发行的硬币种类和硬币面值的巧妙安排。如只有面值分别为1、5和11单位的硬币,而希望找回总额为15单位的硬币。按贪婪算法,应找1个11单位面值的硬币和4个1单位面值的硬币,共找回5个硬币。但最优的解应是3个5单位面值的硬币。

【问题】 装箱问题

问题描述:装箱问题可简述如下:设有编号为0、1、…、n-1的n种物品,体积分别为v0、v1、…、vn-1。将这n种物品装到容量都为V的若干箱子里。约定这n种物品的体积均不超过V,即对于0≤i<n,有0<vi≤V。不同的装箱方案所需要的箱子数目可能不同。装箱问题要求使装尽这n种物品的箱子数要少。

若考察将n种物品的集合分划成n个或小于n个物品的所有子集,最优解就可以找到。但所有可能划分的总数太大。对适当大的n,找出所有可能的划分要花费的时间是无法承受的。为此,对装箱问题采用非常简单的近似算法,即贪婪法。该算法依次将物品放到它第一个能放进去的箱子中,该算法虽不能保证找到最优解,但还是能找到非常好的解。不失一般性,设n件物品的体积是按从大到小排好序的,即有v0≥v1≥…≥vn-1。如不满足上述要求,只要先对这n件物品按它们的体积从大到小排序,然后按排序结果对物品重新编号即可。装箱算法简单描述如下:

{ 输入箱子的容积;

输入物品种数n;

按体积从大到小顺序,输入各物品的体积;

预置已用箱子链为空;

预置已用箱子计数器box_count为0;

for (i=0;i<n;i++)

{ 从已用的第一只箱子开始顺序寻找能放入物品i 的箱子j;

if (已用箱子都不能再放物品i)

{ 另用一个箱子,并将物品i放入该箱子;

box_count++;

}

else

将物品i放入箱子j;

}

}

上述算法能求出需要的箱子数box_count,并能求出各箱子所装物品。下面的例子说明该算法不一定能找到最优解,设有6种物品,它们的体积分别为:60、45、35、20、20和20单位体积,箱子的容积为100个单位体积。按上述算法计算,需三只箱子,各箱子所装物品分别为:第一只箱子装物品1、3;第二只箱子装物品2、4、5;第三只箱子装物品6。而最优解为两只箱子,分别装物品1、4、5和2、3、6。

若每只箱子所装物品用链表来表示,链表首结点指针存于一个结构中,结构记录尚剩余的空间量和该箱子所装物品链表的首指针。另将全部箱子的信息也构成链表。以下是按以上算法编写的程序。

【程序】

# include <stdio.h>

# include <stdlib.h>

typedef struct ele

{ int vno;

struct ele *link;

} ELE;

typedef struct hnode

{ int remainder;

ELE *head;

Struct hnode *next;

} HNODE;

void main()

{ int n, i, box_count, box_volume, *a;

HNODE *box_h, *box_t, *j;

ELE *p, *q;

Printf(“输入箱子容积\n”);

Scanf(“%d”,&box_volume);

Printf(“输入物品种数\n”);

Scanf(“%d”,&n);

A=(int *)malloc(sizeof(int)*n);

Printf(“请按体积从大到小顺序输入各物品的体积:”);

For (i=0;i<n;i++) scanf(“%d”,a+i);

Box_h=box_t=NULL;

Box_count=0;

For (i=0;i<n;i++)

{ p=(ELE *)malloc(sizeof(ELE));

p->vno=i;

for (j=box_h;j!=NULL;j=j->next)

if (j->remainder>=a[i]) break;

if (j==NULL)

{ j=(HNODE *)malloc(sizeof(HNODE));

j->remainder=box_volume-a[i];

j->head=NULL;

if (box_h==NULL) box_h=box_t=j;

else box_t=boix_t->next=j;

j->next=NULL;

box_count++;

}

else j->remainder-=a[i];

for (q=j->next;q!=NULL&&q->link!=NULL;q=q->link);

if (q==NULL)

{ p->link=j->head;

j->head=p;

}

else

{ p->link=NULL;

q->link=p;

}

}

printf(“共使用了%d只箱子”,box_count);

printf(“各箱子装物品情况如下:”);

for (j=box_h,i=1;j!=NULL;j=j->next,i++)

{ printf(“第%2d只箱子,还剩余容积%4d,所装物品有;\n”,I,j->remainder);

for (p=j->head;p!=NULL;p=p->link)

printf(“%4d”,p->vno+1);

printf(“\n”);

}

}

5.分治法

任何一个可以用计算机求解的问题所需的计算时间都与其规模N有关。问题的规模越小,越容易直接求解,解题所需的计算时间也越少。例如,对于n个元素的排序问题,当n=1时,不需任何计算;n=2时,只要作一次比较即可排好序;n=3时只要作3次比较即可,…。而当n较大时,问题就不那么容易处理了。要想直接解决一个规模较大的问题,有时是相当困难的。

分治法的设计思想是,将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。

如果原问题可分割成k个子问题(1<k≤n),且这些子问题都可解,并可利用这些子问题的解求出原问题的解,那么这种分治法就是可行的。由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。

分治法所能解决的问题一般具有以下几个特征:

(1)该问题的规模缩小到一定的程度就可以容易地解决;

(2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;

(3)利用该问题分解出的子问题的解可以合并为该问题的解;

(4)该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。

上述的第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;第二条特征是应用分治法的前提,它也是大多数问题可以满足的,此特征反映了递归思想的应用;第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑贪心法或动态规划法。第四条特征涉及到分治法的效率,如果各子问题是不独立的,则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好。

分治法在每一层递归上都有三个步骤:

(1)分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;

(2)解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题;

(3)合并:将各个子问题的解合并为原问题的解。

6.动态规划法

经常会遇到复杂问题不能简单地分解成几个子问题,而会分解出一系列的子问题。简单地采用把大问题分解成子问题,并综合子问题的解导出大问题的解的方法,问题求解耗时会按问题规模呈幂级数增加。

为了节约重复求相同子问题的时间,引入一个数组,不管它们是否对最终解有用,把所有子问题的解存于该数组中,这就是动态规划法所采用的基本方法。以下先用实例说明动态规划方法的使用。

【问题】 求两字符序列的最长公共字符子序列

问题描述:字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列。令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0,y1,…,yk-1”是X的子序列,存在X的一个严格递增下标序列<i0,i1,…,ik-1>,使得对所有的j=0,1,…,k-1,有xij=yj。例如,X=“ABCBDAB”,Y=“BCDB”是X的一个子序列。

考虑最长公共子序列问题如何分解成子问题,设A=“a0,a1,…,am-1”,B=“b0,b1,…,bm-1”,并Z=“z0,z1,…,zk-1”为它们的最长公共子序列。不难证明有以下性质:

(1) 如果am-1=bn-1,则zk-1=am-1=bn-1,且“z0,z1,…,zk-2”是“a0,a1,…,am-2”和“b0,b1,…,bn-2”的一个最长公共子序列;

(2) 如果am-1!=bn-1,则若zk-1!=am-1,蕴涵“z0,z1,…,zk-1”是“a0,a1,…,am-2”和“b0,b1,…,bn-1”的一个最长公共子序列;

(3) 如果am-1!=bn-1,则若zk-1!=bn-1,蕴涵“z0,z1,…,zk-1”是“a0,a1,…,am-1”和“b0,b1,…,bn-2”的一个最长公共子序列。

这样,在找A和B的公共子序列时,如有am-1=bn-1,则进一步解决一个子问题,找“a0,a1,…,am-2”和“b0,b1,…,bm-2”的一个最长公共子序列;如果am-1!=bn-1,则要解决两个子问题,找出“a0,a1,…,am-2”和“b0,b1,…,bn-1”的一个最长公共子序列和找出“a0,a1,…,am-1”和“b0,b1,…,bn-2”的一个最长公共子序列,再取两者中较长者作为A和B的最长公共子序列。

代码如下:

# include <stdio.h>

# include <string.h>

# define N 100

char a[N],b[N],str[N];

int lcs_len(char *a, char *b, int c[ ][ N])

{ int m=strlen(a), n=strlen(b), i,j;

for (i=0;i<=m;i++) c[i][0]=0;

for (i=0;i<=n;i++) c[0][i]=0;

for (i=1;i<=m;i++)

for (j=1;j<=m;j++)

if (a[i-1]==b[j-1])

c[i][j]=c[i-1][j-1]+1;

else if (c[i-1][j]>=c[i][j-1])

c[i][j]=c[i-1][j];

else

c[i][j]=c[i][j-1];

return c[m][n];

}

char *buile_lcs(char s[ ],char *a, char *b)

{ int k, i=strlen(a), j=strlen(b);

k=lcs_len(a,b,c);

s[k]=’\0’;

while (k>0)

if (c[i][j]==c[i-1][j]) i--;

else if (c[i][j]==c[i][j-1]) j--;

else { s[--k]=a[i-1];

i--; j--;

}

return s;

}

void main()

{ printf (“Enter two string(<%d)!\n”,N);

scanf(“%s%s”,a,b);

printf(“LCS=%s\n”,build_lcs(str,a,b));

}

7.迭代法

迭代法是用于求方程或方程组近似根的一种常用的算法设计方法。设方程为f(x)=0,用某种数学方法导出等价的形式x=g(x),然后按以下步骤执行:

(1) 选一个方程的近似根,赋给变量x0;

(2) 将x0的值保存于变量x1,然后计算g(x1),并将结果存于变量x0;

(3) 当x0与x1的差的绝对值还小于指定的精度要求时,重复步骤(2)的计算。

若方程有根,并且用上述方法计算出来的近似根序列收敛,则按上述方法求得的x0就认为是方程的根。上述算法用C程序的形式表示为:

程序如下:

【算法】迭代法求方程组的根

{ for (i=0;i<n;i++)

x[i]=初始近似根;

do {

for (i=0;i<n;i++)

y[i] = x[i];

for (i=0;i<n;i++)

x[i] = gi(X);

for (delta=0.0,i=0;i<n;i++)

if (fabs(y[i]-x[i])>delta) delta=fabs(y[i]-x[i]); } while (delta>Epsilon);

for (i=0;i<n;i++)

printf(“变量x[%d]的近似根是 %f”,I,x[i]);

printf(“\n”);

} 具体使用迭代法求根时应注意以下两种可能发生的情况:

(1)如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制;

(2)方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导致迭代失败。

8.穷举搜索法

穷举搜索法是对可能是解的众多候选解按某种顺序进行逐一枚举和检验,并从众找出那些符合要求的候选解作为问题的解。

【问题】 将A、B、C、D、E、F这六个变量排成如图所示的三角形,这六个变量分别取[1,6]上的整数,且均不相同。求使三角形三条边上的变量之和相等的全部解。如图就是一个解。

程序引入变量a、b、c、d、e、f,并让它们分别顺序取1至6的整数,在它们互不相同的条件下,测试由它们排成的如图所示的三角形三条边上的变量之和是否相等,如相等即为一种满足要求的排列,把它们输出。当这些变量取尽所有的组合后,程序就可得到全部可能的解。程序如下:

# include <stdio.h>

void main()

{ int a,b,c,d,e,f;

for (a=1;a<=6;a++) {

for (b=1;b<=6;b++) {

if (b==a) continue;

for (c=1;c<=6;c++) {

if (c==a)||(c==b) continue;

for (d=1;d<=6;d++) {

if (d==a)||(d==b)||(d==c) continue;

for (e=1;e<=6;e++) {

if (e==a)||(e==b)||(e==c)||(e==d) continue;

f = 21-(a+b+c+d+e);

if ((a+b+c==c+d+e))&&(a+b+c==e+f+a)) {

printf(“%6d,a);

printf(“%4d%4d”,b,f);

printf(“%2d%4d%4d”,c,d,e);

scanf(“%*c”);

}

}

}

}

}

}}

按穷举法编写的程序通常不能适应变化的情况。如问题改成有9个变量排成三角形,每条边有4个变量的情况,程序的循环重数就要相应改变。

❼ 计算模式有哪些

流式计算,分布式计算
典型系统hadoop cloudra

❽ 计算模式

为了使人为的模型与自然界的实际构造形变保持相似性,较为真实的模拟应力的变化状态,主要需考虑三个因素:①地质体与模型材料力学性质的相似性;②应力作用的方式和强度;③构造应力范围的边界条件。

(一)力学模型的几何特征及物性参数的确定

力学模型的选取时考虑了主要断裂构造,并做了适当筛选。选取断裂的主要依据为断裂的规模大小、切割深度、活动性等。重点考虑燕山运动期区域性新华夏构造体系活动时的构造应力场,以脆性-弹性介质的小变形作为模拟区内成矿期构造应力场的原则。

区内常出露的地质体主要有四类:太古宇胶东群片麻岩、燕山期玲珑花岗岩、郭家岭花岗闪长岩和断裂构造岩。花岗岩和片麻岩可视为各向同性体,而断裂构造带由充填的矿脉、岩脉及构造岩组成,平行与垂直断裂方向的力学参数相差很小,仍可近似视为各向同性介质。计算所用物体常数根据有关岩石力学性质方面的文献资料,对物性参数作了近似性选择,其中断裂带的物性参数由计算取得:

胶东西北部构造体系及金成矿动力学

其中,Vp——纵波速度,v——泊松比,ρ——密度,分别取值为Vp=4.17km/s,u=0.254,ρ=3.1g/cm3,利用上式计算得E=4.49,物性参数的选取如表5-4。

表5-4岩石力学参数表(单位109×9.80665)

(二)模型的受力方式、强度和边界条件的确定

模型的受力与边界条件的确定,主要考虑四个方面的因素:其一,依据宏观变形场的特征,参考大区域的构造应力作用方式及新华夏系构造应力场的特征;其二,依据小构造变形特征,如区内的一些线状、面状构造的展布方向和断层错动的组合形式均反映构造格局形成于以南北向反扭为主导的构造应力作用;其三,依据节理、裂隙以及显微构造综合分析法所测得的最大主压应力方向为北西-南东方向的挤压,与新华夏构造体系应力活动方式相近;其四,依据石英动态重结晶颗粒大小和石英自由位错密度估算的差异应力值,以及用声发射法测得的历史最大应力值的大小,其应力值大致在(600-1400)×105Pa范围内。

基于上述四个方面的考虑,模型的边界条件设为:模型总体受北西西-南东东方向的挤压力作用,其中,东、西两边界受逆时针方向的扭力和挤压力,合力方向为北西,量级约为850×105Pa,然后按力的分解原则将此力分配到各个边界上。

(三)模型及单元划分

以研究区的范围为边界,取地壳下单位厚度的岩层薄板面积为7912km2的地块为模型。计算过程中只考虑地块受水平方向的应力作用,忽略垂向应力和重力的影响,将整个模型视为理想的弹性体平面应力问题处理。

模型的边界基本上与研究区边界重合。选取栖霞断裂为模型的东界,西界、北界和南界则与南北向方厘线为界。

单元的划分主要遵循四个原则:应力可能集中的地区划分力求细、密,例如在断层的交汇处,断层与岩体的接触带;评价的重点地区要划分较为细、密;尽量使单元的边界线与地质体的分界线、地质体内部的线性构造线相重合,并将一些特征点划为单元结点,例如突变载荷点、集中力作用点;单元的边长力求相等,应避免出现钝角。据此将模型划分为582个三角形单元,节点数为321个,同时,取东西向的方厘线为X轴,南北向的方厘线为Y轴,取方厘网中(21210,4100)为坐标原点。显然,所设的边界受力方式满足∑Fx=0,∑FY=0的平均条件,为了使ΣM=0,在模型的232与321号节点上设置两个固定的约束点(图5-5)。

图5-5胶东西北部构造应力场有限元单元划分图

❾ 我们为什么要学数据结构与算法,设计模式

数据结构是非常重要的 ,举个例子,如果要在一堆数中查找一个数,挨个遍历查询,是非常有失效率的,使用平衡树或者哈希表,则能高效查询,尤其是数据量极大时,譬如几十万到多少亿的数据量,将会有极其明显的效率差距。可能高效的程序只需要1ms,暴力查找要几小时
类似的例子还有很多,算法也是如此
而设计模式,只有做大型工程才有用,能够更合理的组织代码,便于开发和维护,小程序是体现不出来什么作用的

热点内容
客服系统源码php 发布:2024-12-29 00:55:12 浏览:656
编程猫G5 发布:2024-12-29 00:45:07 浏览:314
域环境搭建文件服务器 发布:2024-12-29 00:17:40 浏览:178
linux创建进程 发布:2024-12-29 00:10:22 浏览:406
给相机加密 发布:2024-12-29 00:08:19 浏览:545
我的世界手机版起床战争服务器 发布:2024-12-29 00:08:10 浏览:308
c语言算法书籍 发布:2024-12-28 23:56:11 浏览:517
冰箱压缩机冰堵 发布:2024-12-28 23:34:32 浏览:705
java版的微信 发布:2024-12-28 23:19:20 浏览:453
安卓手机怎么恢复原来的图像 发布:2024-12-28 22:55:42 浏览:765