关联分析算法
❶ 生物信息学中的连锁分析与关联分析有哪些区别和联系呢
生物信息学,是一门综合学科。涉及到数学,生物学和计算机的内容。但在我看来,计算机的基础需要,但要求不是很高,关键是要有很好的生物学知识,包括遗传学的、生物化学的、发育生物学的、分子生物学的、植物生理学的知识等等,也就说需要达到这样的一个要求:在进行数据分析时,能对各种分析结果进行生物学的评价,并给出最优的分析策略。同时也应该有纯熟的数理基础,包括统计学的、拓扑学的,这样才能把待分析的问题转换成可计算的模型,最后能给出实现的程序。从个人来说,因为生物信息学是一个非常大的领域,所以,关键是要确定自己的研究方向。比如,以关联分析为方向的生物信息学,那么就要掌握好各种关联分析的统计分析方法,有很强的数据管理能力,足够好的序列分析能力(这是进行variation查找和分析的基础)。回到6年以前,如果决定在生物信息学上发展,那么我也许会做下面这些事情:首先,从最不重要的计算机这个方面来说:要掌握好bash等脚本语言,一般的linux问题都能很好的解决。熟练使用apache,mysql等基础软件工具,用joomla等CMS配置搭建网站。应该努力精通perl,bioperl,以基于此的各种分析工具,比如gbrowser,cmap等。足够好的c/c++语言能力,这是实现新算法的最高效语言。应该努力精通R语言,这是进行统计分析的基础工具。如果有机会,学学erlang这样一些函数式语言吧。
❷ 灰色关联分析方法的公式是什么
灰色关联分析理论及方法
对于两个系统之间的因素,其随时间或不同对象而变化的关联性大小的量度,称为关联度。在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。因此,灰色关联分析方法,是根据因素之间发展趋势的相似或相异程度,亦即“灰色关联度”,作为衡量因素间关联程度的一种方法[16]。灰色系统理论提出了对各子系统进行灰色关联度分析的概念,意图透过一定的方法,去寻求系统中各子系统(或因素)之间的数值关系。因此,灰色关联度分析对于一个系统发展变化态势提供了量化的度量,非常适合动态历程分析。
灰色系统关联分析的具体计算步骤如下[17]:
(1)确定反映系统行为特征的参考数列和影响系统行为的比较数列
反映系统行为特征的数据序列,称为参考数列。影响系统行为的因素组成的数据序列,称比较数列。
(2)对参考数列和比较数列进行无量纲化处理
由于系统中各因素的物理意义不同,导致数据的量纲也不一定相同,不便于比较,或在比较时难以得到正确的结论。因此在进行灰色关联度分析时,一般都要进行无量纲化的数据处理。
(3)求参考数列与比较数列的灰色关联系数ξ(Xi)
所谓关联程度,实质上是曲线间几何形状的差别程度。因此曲线间差值大小,可作为关联程度的衡量尺度。对于一个参考数列X0有若干个比较数列X1, X2,…, Xn,各比较数列与参考数列在各个时刻(即曲线中的各点)的关联系数ξ(Xi)可由下列公式算出:
其中 ζ为分辨系数,0<ζ<1。
是第二级最小差,记为Δmin。 是两级最大差,记为Δmax。
为各比较数列Xi曲线上的每一个点与参考数列X0曲线上的每一个点的绝对差值。记为Δoi(k)。所以关联系数ξ(Xi)也可简化如下列公式:
(4)求关联度ri
因为关联系数是比较数列与参考数列在各个时刻(即曲线中的各点)的关联程度值,所以它的数不止一个,而信息过于分散不便于进行整体性比较。因此有必要将各个时刻(即曲线中的各点)的关联系数集中为一个值,即求其平均值,作为比较数列与参考数列间关联程度的数量表示,关联度ri公式如下:
(5)排关联序
因素间的关联程度,主要是用关联度的大小次序描述,而不仅是关联度的大小。将m个子序列对同一母序列的关联度按大小顺序排列起来,便组成了关联序,记为{x},它反映了对于母序列来说各子序列的“优劣”关系。若r0i>r0j,则称{xi}对于同一母序列{x0}优于{xj},记为{xi}>{xj} ;若r0i表1 代表旗县参考数列、比较数列特征值。
❸ 关联分析 分析在哪些情况下,一种算法比其他算法好
灰色关联度分析法是一种多因素统计分析方法,它是以各因素的样本数据为依据用灰色关联度来描述因素间关系的强弱、大小和次序,若样本数据反映出的两因素变化的态势(方向、大小和速度等)基本一致,则它们之间的关联度较大
❹ 高分求公司名称信息聚类关联分析算法思路
我们公司每天要导入大量有关公司名称的销售信息。 希望能有程序对这些信息进行处理。 1。 自动进行有用关键词分类 如:含有如下公司名称信息
北京某公司东城药店 北京某公司西城药店 北京某公司东城经销处
系统能自动找到它们之间的共同点:即: 北京某公司,统计出 北京某公司 3, 药店 2 东城 2
有什么工具能快速进行这方面的数据挖掘吗? 有什么好的算法或详细思路能完成这项工作呢?最好能用SQL存储过程就能实现。 因为数据是实时动态,量很大,几十万条吧。
❺ 什么是数据挖掘中的关联分析
FineBI数据挖掘的结果将以字段和记录的形式添加到多维数据库中,并可以在新建分析时从一个专门的数据挖掘业务包中被使用,使用的方式与拖拽任何普通的字段没有任何区别。
配合FineBI新建分析中的各种控件和图表,使用OLAP的分析人员可以轻松的查看他们想要的特定的某个与结果,或是各种各样结果的汇总。
❻ 怎么用SmartMining进行关联分析
有一份数据
数据清洗与数据准备
成生频繁项集字段
使用Apriori训练规则
得到关联分析结果
结果分析
大概过程如此,两种方法实现,一是可以通过语言编程实现,二是可以使用软件自带的封装算法实现。
❼ 灰色关联分析方法如何计算
灰关联分析的具体计算步骤如下:
(1)确定反映系统行为特征的参考数列和影响系统行为的比较数列
反映系统行为特征的数据序列,称为参考数列。影响系统行为的因素组成的数据序列,称比较数列。
(2)对参考数列和比较数列进行无量纲化处理
由于系统中各因素的物理意义不同,导致数据的量纲也不一定相同不便于比较,或在比较时难以得到正确的结论。因此在进行灰色关联度分析时,一般都要进行无量纲化的数据处理。
(3)、求差序列(4)、求两级最大差与最小差(5)、求关联系数(6)、计算关联度
我自己在word中编辑的公式粘贴不过来
❽ 关联分析,数据分析,k算法中任选其一,写 不少于1000字的文章
自己动手!丰衣足食!