当前位置:首页 » 操作系统 » 梯度算法

梯度算法

发布时间: 2022-01-15 13:22:34

① 基于R语言的梯度推进算法介绍

基于R语言的梯度推进算法介绍

通常来说,我们可以从两个方面来提高一个预测模型的准确性:完善特征工程(feature engineering)或是直接使用Boosting算法。通过大量数据科学竞赛的试炼,我们可以发现人们更钟爱于Boosting算法,这是因为和其他方法相比,它在产生类似的结果时往往更加节约时间。

Boosting算法有很多种,比如梯度推进(Gradient Boosting)、XGBoost、AdaBoost、Gentle Boost等等。每一种算法都有自己不同的理论基础,通过对它们进行运用,算法之间细微的差别也能够被我们所察觉。如果你是一个新手,那么太好了,从现在开始,你可以用大约一周的时间来了解和学习这些知识。

在本文中,笔者将会向你介绍梯度推进算法的基本概念及其复杂性,此外,文中还分享了一个关于如何在R语言中对该算法进行实现的例子。

快问快答

每当谈及Boosting算法,下列两个概念便会频繁的出现:Bagging和Boosting。那么,这两个概念是什么,它们之间究竟有什么区别呢?让我们快速简要地在这里解释一下:

Bagging:对数据进行随机抽样、建立学习算法并且通过简单平均来得到最终概率结论的一种方法。

Boosting:与Bagging类似,但在样本选择方面显得更为聪明一些——在算法进行过程中,对难以进行分类的观测值赋予了越来越大的权重。

我们知道你可能会在这方面产生疑问:什么叫做越来越大?我怎么知道我应该给一个被错分的观测值额外增加多少的权重呢?请保持冷静,我们将在接下来的章节里为你解答。

从一个简单的例子出发

假设你有一个初始的预测模型M需要进行准确度的提高,你知道这个模型目前的准确度为80%(通过任何形式度量),那么接下来你应该怎么做呢?

有一个方法是,我们可以通过一组新的输入变量来构建一个全新的模型,然后对它们进行集成学习。但是,笔者在此要提出一个更简单的建议,如下所示:

Y= M(x) + error

如果我们能够观测到误差项并非白噪声,而是与我们的模型输出(Y)有着相同的相关性,那么我们为什么不通过这个误差项来对模型的准确度进行提升呢?比方说:

error = G(x) + error2

或许,你会发现模型的准确率提高到了一个更高的数字,比如84%。那么下一步让我们对error2进行回归。

error2 = H(x) + error3

然后我们将上述式子组合起来:

Y = M(x) + G(x) + H(x) + error3

这样的结果可能会让模型的准确度更进一步,超过84%。如果我们能像这样为三个学习算法找到一个最佳权重分配,

Y = alpha * M(x) + beta * G(x) + gamma * H(x) + error4

那么,我们可能就构建了一个更好的模型。

上面所述的便是Boosting算法的一个基本原则,当我初次接触到这一理论时,我的脑海中很快地冒出了这两个小问题:

1.我们如何判断回归/分类方程中的误差项是不是白噪声?如果无法判断,我们怎么能用这种算法呢?

2.如果这种算法真的这么强大,我们是不是可以做到接近100%的模型准确度?

接下来,我们将会对这些问题进行解答,但是需要明确的是,Boosting算法的目标对象通常都是一些弱算法,而这些弱算法都不具备只保留白噪声的能力;其次,Boosting有可能导致过度拟合,所以我们必须在合适的点上停止这个算法。

试着想象一个分类问题

请看下图:

从最左侧的图开始看,那条垂直的线表示我们运用算法所构建的分类器,可以发现在这幅图中有3/10的观测值的分类情况是错误的。接着,我们给予那三个被误分的“+”型的观测值更高的权重,使得它们在构建分类器时的地位非常重要。这样一来,垂直线就直接移动到了接近图形右边界的位置。反复这样的过程之后,我们在通过合适的权重组合将所有的模型进行合并。

算法的理论基础

我们该如何分配观测值的权重呢?

通常来说,我们从一个均匀分布假设出发,我们把它称为D1,在这里,n个观测值分别被分配了1/n的权重。

步骤1:假设一个α(t);

步骤2:得到弱分类器h(t);

步骤3:更新总体分布,

其中,

步骤4:再次运用新的总体分布去得到下一个分类器;

觉得步骤3中的数学很可怕吗?让我们来一起击破这种恐惧。首先,我们简单看一下指数里的参数,α表示一种学习率,y是实际的回应值(+1或-1),而h(x)则是分类器所预测的类别。简单来说,如果分类器预测错了,这个指数的幂就变成了1 *α, 反之则是-1*α。也就是说,如果某观测值在上一次预测中被预测错误,那么它对应的权重可能会增加。那么,接下来该做什么呢?

步骤5:不断重复步骤1-步骤4,直到无法发现任何可以改进的地方;

步骤6:对所有在上面步骤中出现过的分类器或是学习算法进行加权平均,权重如下所示:

案例练习

最近我参加了由Analytics Vidhya组织的在线hackathon活动。为了使变量变换变得容易,在complete_data中我们合并了测试集与训练集中的所有数据。我们将数据导入,并且进行抽样和分类。

library(caret)rm(list=ls())setwd("C:Usersts93856DesktopAV")library(Metrics)complete <- read.csv("complete_data.csv", stringsAsFactors = TRUE)train <- complete[complete$Train == 1,]score <- complete[complete$Train != 1,]set.seed(999)ind <- sample(2, nrow(train), replace=T, prob=c(0.60,0.40))trainData<-train[ind==1,]testData <- train[ind==2,]set.seed(999)ind1 <- sample(2, nrow(testData), replace=T, prob=c(0.50,0.50))trainData_ens1<-testData[ind1==1,]testData_ens1 <- testData[ind1==2,]table(testData_ens1$Disbursed)[2]/nrow(testData_ens1)#Response Rate of 9.052%

接下来,就是构建一个梯度推进模型(Gradient Boosting Model)所要做的:

fitControl <- trainControl(method = "repeatedcv", number = 4, repeats = 4)trainData$outcome1 <- ifelse(trainData$Disbursed == 1, "Yes","No")set.seed(33)gbmFit1 <- train(as.factor(outcome1) ~ ., data = trainData[,-26], method = "gbm", trControl = fitControl,verbose = FALSE)gbm_dev <- predict(gbmFit1, trainData,type= "prob")[,2]gbm_ITV1 <- predict(gbmFit1, trainData_ens1,type= "prob")[,2]gbm_ITV2 <- predict(gbmFit1, testData_ens1,type= "prob")[,2]auc(trainData$Disbursed,gbm_dev)auc(trainData_ens1$Disbursed,gbm_ITV1)auc(testData_ens1$Disbursed,gbm_ITV2)

在上述案例中,运行代码后所看到的所有AUC值将会非常接近0.84。我们随时欢迎你对这段代码进行进一步的完善。在这个领域,梯度推进模型(GBM)是最为广泛运用的方法,在未来的文章里,我们可能会对GXBoost等一些更加快捷的Boosting算法进行介绍。

结束语

笔者曾不止一次见识过Boosting算法的迅捷与高效,在Kaggle或是其他平台的竞赛中,它的得分能力从未令人失望,当然了,也许这要取决于你能够把特征工程(feature engineering)做得多好了。

以上是小编为大家分享的关于基于R语言的梯度推进算法介绍的相关内容,更多信息可以关注环球青藤分享更多干货

② 计算梯度有几种数值方法

数值计算导数的方法很多,
常用的有插值型求导公式用于求某点上导数,样条求导公式用于求利用插值的结果拟合出的结果。一般有3点公式或者5点公式。
一般可以根据需要自己构造求导的算法,这些求导算法都可以用来算梯度。
Matlab中可以直接用del命令计算高度矩阵的表面梯度。
对应不同的情况,可以有各种各样的方法。

③ 图像锐化技术中的梯度法、拉普拉斯算法、Robert算法,哪种比较简单请大神指教

梯度比较简单 只说原理的话 其实robert算法等都挺容易理解。就是将像素用其周围的像素的某种结合来代替,来找到边缘

④ 大学数学中grad怎么算

grad梯度算法如下图所示:


梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。

(4)梯度算法扩展阅读

在向量微积分中,标量场的梯度是一个向量场。标量场中某一点上的梯度指向标量场增长最快的方向,梯度的长度是这个最大的变化率。

在单变量的实值函数的情况,梯度只是导数,或者,对于一个线性函数,也就是线的斜率。

梯度一词有时用于斜度,也就是一个曲面沿着给定方向的倾斜程度。可以通过取向量梯度和所研究的方向的点积来得到斜度。

梯度的数值有时也被称为梯度。

⑤ 用matlab实现梯度下降算法(gradient descent)。

function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
%GRADIENTDESCENT Performs gradient descent to learn theta
% theta = GRADIENTDESENT(X, y, theta, alpha, num_iters) updates theta by
% taking num_iters gradient steps with learning rate alpha
% Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, 1);
for iter = 1:num_iters,
% ====================== YOUR CODE HERE ======================
% Instructions: Perform a single gradient step on the parameter vector
% theta.
%
% Hint: While debugging, it can be useful to print out the values
% of the cost function (computeCost) and gradient here.

p=theta(1)-alpha*(1/m)*(sum((X*theta-y).*X(:,1)));
q=theta(2)-alpha*(1/m)*(sum((X*theta-y).*X(:,2)));
theta(1)=p;
theta(2)=q;

% ============================================================
% Save the cost J in every iteration
J_history(iter) = computeCost(X, y, theta);
end
end

⑥ 梯度上升算法与梯度下降算法求解回归系数怎么理解

如果grad为梯度阵mean(mean(grad))就是所有点灰度梯度的平均值。
其实是一回事了。最小化损失函数,就用梯度下降,最大化似然函数,就用梯度上升。
本质上都是一样的。

⑦ 什么是梯度下降算法

梯度下降是迭代法的一种,梯度下降法是一个最优化算法,通常也称为最速下降法。最速下降法是求解无约束优化问题最简单和最古老的方法之一,常用于机器学习和人工智能当中用来递归性地逼近最小偏差模型。
梯度下降法的计算过程就是沿梯度下降的方向求解极小值(也可以沿梯度上升方向求解极大值)。

⑧ 如何理解近端梯度算法

L1正则化是一种常用的获取稀疏解的手段,同时L1范数也是L0范数的松弛范数。求解L1正则化问题最常用的手段就是通过加速近端梯度算法来实现的。

考虑一个这样的问题:

minx f(x)+λg(x)

x∈Rn,f(x)∈R,这里f(x)是一个二阶可微的凸函数,g(x)是一个凸函数(或许不可导),如上面L1的正则化||x||。

此时,只需要f(x)满足利普希茨(Lipschitz)连续条件,即对于定义域内所有向量x,y,存在常数M使得||f'(y)-f'(x)||<=M·||y-x||,那么这个模型就可以通过近端梯度算法来进行求解了。

ps:下面涉及很多数学知识,不想了解数学的朋友请跳到结论处,个人理解,所以也不能保证推理很严谨,如有问题,请一定帮忙我告诉我。

利普希茨连续条件的几何意义可以认为是函数在定义域内任何点的梯度都不超过M(梯度有上限),也就是说不会存在梯度为正负无穷大的情况。

因而,我们有下图所示的推算:

我们可以用f(y) = f(x)+f'(x)(y-x)+M/2*||y-x||2来近似的表示f(y),也可以认为是高维下的泰勒分解,取到二次项。

我们换一种写法,f(xk+1) = f(xk)+f'(xk)(xk+1-xk)+M/2*||xk+1-xk||2,也就是说可以直接迭代求minx f(x),就是牛顿法辣。

再换一种写法,f(xk+1)=(M/2)(xk+1-(xk+(1/M)f'(xk)))2+CONST,其中CONST是一个与xk+1无关的常数,也就是说,此时我们可以直接写出这个条件下xk+1的最优取值就是xk+1=xk+(1/M)f'(xk)。令z=xk+(1/M)f'(xk)。

回到原问题,minx f(x)+λg(x),此时问题变为了求解minx (M/2)||x-z||2+λg(x)。

实际上在求解这个问题的过程中,x的每一个维度上的值是互不影响的,可以看成n个独立的一维优化问题进行求解,最后组合成一个向量就行。

如果g(x)=||x||1,就是L1正则化,那么最后的结论可以通过收缩算子来表示。

即xk+1=shrink(z,λ/M)。具体来说,就是Z向量的每一个维度向原点方向移动λ/M的距离(收缩,很形象),对于xk+1的第i个维度xi=sgn(zi)*max(|zi|-λ/M,0),其中sgn()为符号函数,正数为1,负数为-1。

一直迭代直到xk收敛吧。

⑨ 什么叫流量梯度算法

这里不能传图片呀,无法把公式给你!
我就描述下,就是对函数的每个分量分别就求偏导,加起来就是了。

⑩ 梯度下降法和粒子群优化算法的区别

粒子群(PSO)算法是近几年来最为流行的进化算法,最早是由Kenned和Eberhart于1995年提出.PSO 算法和其他进化算法类似,也采用“群体”和“进化”的概念,通过个体间的协作与竞争,实现复杂空间中最优解的搜索.PSO 先生成初始种群,即在可行解空间中随机初始化一群粒子,每个粒子都为优化问题的一个可行解,并由目标函数为之确定一个适应值(fitness value).PSO 不像其他进化算法那样对于个体使用进化算子,而是将每个个体看作是在n 维搜索空间中的一个没有体积和重量的粒子,每个粒子将在解空间中运动,并由一个速度决定其方向和距离.通常粒子将追随当前的最优粒子而运动,并经逐代搜索最后得到最优解.在每一代中,粒子将跟踪两个极值,一为粒子本身迄今找到的最优解 pbest ,另一为全种群迄今找到的最优解 gbest.由于认识到 PSO 在函数优化等领域所蕴含的广阔的应用前景,在 Kenned 和 Eberhart 之后很多学者都进行了这方面的研究.目前已提出了多种 PSO改进算法,并广泛应用到许多领域。

热点内容
我的世界服务器只能边跳边走 发布:2024-12-26 09:55:26 浏览:461
锈湖绿色盒子密码是什么 发布:2024-12-26 09:53:16 浏览:202
mysql数据库连接类 发布:2024-12-26 09:49:21 浏览:80
体算法 发布:2024-12-26 09:29:22 浏览:841
android时间时区时间 发布:2024-12-26 09:09:54 浏览:688
外壳加密狗 发布:2024-12-26 08:57:59 浏览:844
笔记本电脑密码怎么破解 发布:2024-12-26 08:57:20 浏览:71
360云盘分享取消密码是多少 发布:2024-12-26 08:55:37 浏览:821
脚本啥格式 发布:2024-12-26 08:55:00 浏览:129
学C语言书 发布:2024-12-26 08:46:46 浏览:85