当前位置:首页 » 操作系统 » matlab路径优化算法

matlab路径优化算法

发布时间: 2022-08-18 14:10:37

⑴ matlab具体的优点

matlab具体的优点:

1、编程环境

MATLAB由一系列工具组成。这些工具方便用户使用MATLAB的函数和文件,其中许多工具采用的是图形用户界面。包括MATLAB桌面和命令窗口、历史命令窗口、编辑器和调试器、路径搜索和用于用户浏览帮助、工作空间、文件的浏览器。

2、简单易用

Matlab是一个高级的矩阵/阵列语言,它包含控制语句、函数、数据结构、输入和输出和面向对象编程特点。用户可以在命令窗口中将输入语句与执行命令同步,也可以先编写好一个较大的复杂的应用程序(M文件)后再一起运行。

3、强大处理

MATLAB是一个包含大量计算算法的集合。其拥有600多个工程中要用到的数学运算函数,可以方便的实现用户所需的各种计算功能。函数中所使用的算法都是科研和工程计算中的最新研究成果,而且经过了各种优化和容错处理。

4、图形处理

MATLAB自产生之日起就具有方便的数据可视化功能,以将向量和矩阵用图形表现出来,并且可以对图形进行标注和打印。高层次的作图包括二维和三维的可视化、图象处理、动画和表达式作图。

5、模块工具

MATLAB对许多专门的领域都开发了功能强大的模块集和工具箱。一般来说,它们都是由特定领域的专家开发的,用户可以直接使用工具箱学习、应用和评估不同的方法而不需要自己编写代码。

6、程序接口

新版本的MATLAB可以利用MATLAB编译器和C/C++数学库和图形库,将自己的MATLAB程序自动转换为独立于MATLAB运行的C和C++代码。

⑵ matlab最优化算法有哪些

matlab最优化程序包括

无约束一维极值问题 进退法 黄金分割法 斐波那契法 牛顿法基本牛顿法 全局牛顿法 割线法 抛物线法 三次插值法 可接受搜索法 Goidstein法 Wolfe.Powell法

单纯形搜索法 Powell法 最速下降法 共轭梯度法 牛顿法 修正牛顿法 拟牛顿法 信赖域法 显式最速下降法, Rosen梯度投影法 罚函数法 外点罚函数法

内点罚函数法 混合罚函数法 乘子法 G-N法 修正G-N法 L-M法 线性规划 单纯形法 修正单纯形法 大M法 变量有界单纯形法 整数规划 割平面法 分支定界法 0-1规划 二次规划

拉格朗曰法 起作用集算法 路径跟踪法 粒子群优化算法 基本粒子群算法 带压缩因子的粒子群算法 权重改进的粒子群算法 线性递减权重法 自适应权重法 随机权重法

变学习因子的粒子群算法 同步变化的学习因子 异步变化的学习因子 二阶粒子群算法 二阶振荡粒子群算法

⑶ matlab蚁群算法路径优化

你用D保存了随机点,D的标号就是对应随机点

⑷ matlab求最优解的的优化算法怎么加约束条件

试下附件中的fminsearchbnd函数,请把fminsearchbnd.m文件放在你的工作路径中。

fminsearchbnd(@(x)f(x(1),x(2),x(3)),[0;0;0],[0;0;0],[30;30;2])
ans=

15.0848
20.5081
0.5452

此文件下载自File exchange,作者:John D'Errico

⑸ 我也需要用matlab的 遗传算法工具箱来优化路径,对matlab才刚接触,不知道怎么用,急求


如果按照默认设置来运行GA,输入fitness函数和未知量个数,就可以运行了。通常,优化问题的目标函数就是fitness函数。如果想重新设置一下GA的参数,可在options处,设置,具体参数设置还要看看帮助文件。

⑹ 求线性规划算法的路径优化毕设

线性规划问题的数学模型有很多解法 比如最简单的 图解法 还有单纯形法 Dijkstra算法(不懂),其实 我觉得 这类问题 均可用电脑软件来解决 如matlab(通用)、 lindo(推荐:专门解决最优化问题且软件应用简单易学)

⑺ Matlab问题--如何用遗传算法优化BP神经网络这篇文献(中文)是如何做的

我上次发给你的程序,只要你从网上下一个matcom45就行了,直接装在c盘就可以了,你发给我的论文变量太多用一般的遗传算法不行,我从网上发现了一个PID神经网络,相当好用,不用计算隐层数目,很适合用遗传算法进行优化,我编了一个例程回来发给你。

我真的不会用matlab的工具箱,如果一定要用matlab来做优化,恐怕我帮不了你了。

为什么一定要用matlab,用C++自己编写不也很好吗?

⑻ MATLAB中RX算法的程序~急用

function [ROUTES,PL,Tau]=ACASP(G,Tau,K,M,S,E,Alpha,Beta,Rho,Q)
%% ---------------------------------------------------------------
% ACASP.m
% 蚁群算法动态寻路算法
% ChengAihua,PLA Information Engineering University,ZhengZhou,China
% Email:[email protected]
% All rights reserved
%% ---------------------------------------------------------------
% 输入参数列表
% G 地形图为01矩阵,如果为1表示障碍物
% Tau 初始信息素矩阵(认为前面的觅食活动中有残留的信息素)
% K 迭代次数(指蚂蚁出动多少波)
% M 蚂蚁个数(每一波蚂蚁有多少个)
% S 起始点(最短路径的起始点)
% E 终止点(最短路径的目的点)
% Alpha 表征信息素重要程度的参数
% Beta 表征启发式因子重要程度的参数
% Rho 信息素蒸发系数
% Q 信息素增加强度系数
%
% 输出参数列表
% ROUTES 每一代的每一只蚂蚁的爬行路线
% PL 每一代的每一只蚂蚁的爬行路线长度
% Tau 输出动态修正过的信息素
%% --------------------变量初始化----------------------------------
%load
D=G2D(G);
N=size(D,1);%N表示问题的规模(象素个数)
MM=size(G,1);
a=1;%小方格象素的边长
Ex=a*(mod(E,MM)-0.5);%终止点横坐标
if Ex==-0.5
Ex=MM-0.5;
end
Ey=a*(MM+0.5-ceil(E/MM));%终止点纵坐标
Eta=zeros(1,N);%启发式信息,取为至目标点的直线距离的倒数
%下面构造启发式信息矩阵
for i=1:N
if ix==-0.5
ix=MM-0.5;
end
iy=a*(MM+0.5-ceil(i/MM));
if i~=E
Eta(1,i)=1/((ix-Ex)^2+(iy-Ey)^2)^0.5;
else
Eta(1,i)=100;
end
end
ROUTES=cell(K,M);%用细胞结构存储每一代的每一只蚂蚁的爬行路线
PL=zeros(K,M);%用矩阵存储每一代的每一只蚂蚁的爬行路线长度
%% -----------启动K轮蚂蚁觅食活动,每轮派出M只蚂蚁--------------------
for k=1:K
disp(k);
for m=1:M
%% 第一步:状态初始化
W=S;%当前节点初始化为起始点
Path=S;%爬行路线初始化
PLkm=0;%爬行路线长度初始化
TABUkm=ones(1,N);%禁忌表初始化
TABUkm(S)=0;%已经在初始点了,因此要排除
DD=D;%邻接矩阵初始化
%% 第二步:下一步可以前往的节点
DW=DD(W,:);
DW1=find(DW
for j=1:length(DW1)
if TABUkm(DW1(j))==0
DW(j)=inf;
end
end
LJD=find(DW
Len_LJD=length(LJD);%可选节点的个数
%% 觅食停止条件:蚂蚁未遇到食物或者陷入死胡同
while W~=E&&Len_LJD>=1
%% 第三步:转轮赌法选择下一步怎么走
PP=zeros(1,Len_LJD);
for i=1:Len_LJD
PP(i)=(Tau(W,LJD(i))^Alpha)*(Eta(LJD(i))^Beta);
end
PP=PP/(sum(PP));%建立概率分布
Pcum=cumsum(PP);
Select=find(Pcum>=rand);
%% 第四步:状态更新和记录
Path=[Path,to_visit];%路径增加
PLkm=PLkm+DD(W,to_visit);%路径长度增加
W=to_visit;%蚂蚁移到下一个节点
for kk=1:N
if TABUkm(kk)==0
DD(W,kk)=inf;
DD(kk,W)=inf;
end
end
TABUkm(W)=0;%已访问过的节点从禁忌表中删除
for j=1:length(DW1)
if TABUkm(DW1(j))==0
DW(j)=inf;
end
end
LJD=find(DW
Len_LJD=length(LJD);%可选节点的个数
end
%% 第五步:记下每一代每一只蚂蚁的觅食路线和路线长度
ROUTES{k,m}=Path;
if Path(end)==E
PL(k,m)=PLkm;
else
PL(k,m)=inf;
end
end
%% 第六步:更新信息素
Delta_Tau=zeros(N,N);%更新量初始化
for m=1:M
if PL(k,m) ROUT=ROUTES{k,m};
TS=length(ROUT)-1;%跳数
PL_km=PL(k,m);
for s=1:TS
x=ROUT(s);
Delta_Tau(x,y)=Delta_Tau(x,y)+Q/PL_km;
Delta_Tau(y,x)=Delta_Tau(y,x)+Q/PL_km;
end
end
end
Tau=(1-Rho).*Tau+Delta_Tau;%信息素挥发一部分,新增加一部分
end
%% ---------------------------绘图--------------------------------
plotif=1;%是否绘图的控制参数
if plotif==1
%绘收敛曲线
meanPL=zeros(1,K);
minPL=zeros(1,K);
for i=1:K
PLK=PL(i,:);
Nonzero=find(PLK
PLKPLK=PLK(Nonzero);
meanPL(i)=mean(PLKPLK);
minPL(i)=min(PLKPLK);
end
figure(1)
plot(minPL);
hold on
plot(meanPL);
grid on
title('收敛曲线(平均路径长度和最小路径长度)');
xlabel('迭代次数');
ylabel('路径长度');
%绘爬行图
figure(2)
axis([0,MM,0,MM])
for i=1:MM
for j=1:MM
if G(i,j)==1
x1=j-1;y1=MM-i;
x2=j;y2=MM-i;
x3=j;y3=MM-i+1;
x4=j-1;y4=MM-i+1;
fill([x1,x2,x3,x4],[y1,y2,y3,y4],[0.2,0.2,0.2]);
hold on
else
x1=j-1;y1=MM-i;
x2=j;y2=MM-i;
x3=j;y3=MM-i+1;
x4=j-1;y4=MM-i+1;
fill([x1,x2,x3,x4],[y1,y2,y3,y4],[1,1,1]);
hold on
end
end
end
hold on
ROUT=ROUTES{K,M};
LENROUT=length(ROUT);
Rx=ROUT;
Ry=ROUT;
for ii=1:LENROUT
Rx(ii)=a*(mod(ROUT(ii),MM)-0.5);
if Rx(ii)==-0.5
Rx(ii)=MM-0.5;
end
Ry(ii)=a*(MM+0.5-ceil(ROUT(ii)/MM));
end
plot(Rx,Ry)
end
plotif2=1;%绘各代蚂蚁爬行图
if plotif2==1
figure(3)
axis([0,MM,0,MM])
for i=1:MM
for j=1:MM
if G(i,j)==1
x1=j-1;y1=MM-i;
x2=j;y2=MM-i;
x3=j;y3=MM-i+1;
x4=j-1;y4=MM-i+1;
fill([x1,x2,x3,x4],[y1,y2,y3,y4],[0.2,0.2,0.2]);
hold on
else
x1=j-1;y1=MM-i;
x2=j;y2=MM-i;
x3=j;y3=MM-i+1;
x4=j-1;y4=MM-i+1;
fill([x1,x2,x3,x4],[y1,y2,y3,y4],[1,1,1]);
hold on
end
end
end
for k=1:K
PLK=PL(k,:);
minPLK=min(PLK);
pos=find(PLK==minPLK);
m=pos(1);
ROUT=ROUTES{k,m};
LENROUT=length(ROUT);
Rx=ROUT;
Ry=ROUT;
for ii=1:LENROUT
Rx(ii)=a*(mod(ROUT(ii),MM)-0.5);
if Rx(ii)==-0.5
Rx(ii)=MM-0.5;
end
Ry(ii)=a*(MM+0.5-ceil(ROUT(ii)/MM));
end
plot(Rx,Ry)
hold on
end
end
将上述算法应用于机器人路径规划,优化效果如下图所示

⑼ 用MATLAB编程怎样解决对非线性约束条件的编写最优化算法

试下附件中的fminsearchbnd函数,请把fminsearchbnd.m文件放在你的工作路径中。fminsearchbnd(@(x)f(x(1),x(2),x(3)), [0;0;0], [0;0;0], [30;30;2])ans = 15.0848 20.5081 0.5452此文件下载自Fileexchange,作者:JohnD'Errico

⑽ MATLAB优化工具箱怎么试用

首先看一个gui对遗传算法的应用,
求下列函数的极小值。
f(x)=x.^4-3*x.^3+x.^2-2;
利用遗传算法求解,选择ga solver(求解器),输入适应函数,输入变量个数,start就可以了,充分反应了遗传算法的优越性。
接着是对无约束一维极值问题的求解。
首先是进退法搜索单谷函数的极值问题。原理就是在固定区间内按照一定步长无穷逼近最优解,不过无论怎样逼近,最后得到的还是符合精度的区间,并不是理论最优解。Matlab中用minJT函数来实现。
相关的函数代码可以在matlab相关文件夹中找到,这里就不多说,不过还是按这种方法求一下上面的极小值问题。
代码如下:
syms x;
f=x^4-3*x^3+x^2-2;
[x1,x2]=minJT(f,0,0.001);
在2009b中结果是。2009b已经没有这个函数了。
无语了一下,继续看下一种方法,黄金分割法。
也是一种无穷逼近法,利用黄金分割长生前一个区间中的内点,舍去一个端点。逐渐逼近最小值,是一种单向收缩法。
不过2009b也没有这个函数了。
然后是斐波那契法。
我们首先就会联想到斐波那契数列,不过这里确实用到了斐波那契数列。
斐波那契法显然是一种双向收缩法具体的搜索原理就不多追究了。
然后便是牛顿迭代法,原来就学过的一种速度相当快的迭代方法,其中优化后的全局牛顿法,一般的牛顿法需要初始点接近最值点而全局牛顿法则不需要这个要求。关最后还有割线法,二次插值和三次插值法。以后会慢慢补充相关的函数m文件的。

热点内容
陌陌登陆密码是什么 发布:2025-01-18 14:36:54 浏览:847
海龟编译器代码 发布:2025-01-18 14:16:51 浏览:33
大闸蟹网站源码 发布:2025-01-18 14:12:19 浏览:104
电脑服务器日期怎么改 发布:2025-01-18 14:05:03 浏览:686
用什么方法打开密码箱呢 发布:2025-01-18 14:04:08 浏览:427
net编程模式 发布:2025-01-18 13:54:20 浏览:690
手机上传播病毒 发布:2025-01-18 13:49:20 浏览:503
空调压缩机电路 发布:2025-01-18 13:42:42 浏览:545
空间访问的记录恢复 发布:2025-01-18 13:26:19 浏览:999
云服务器mysql怎么连接 发布:2025-01-18 13:26:08 浏览:648