当前位置:首页 » 操作系统 » 有监督算法

有监督算法

发布时间: 2022-08-17 15:26:54

⑴ 有监督机器学习的预测结果为离散值,这种机器学习称为什么

有监督机器学习的预测结果为离散值,这种机器学习称为回归。
有监督机器学习算法用于解决分类或回归问题。分类问题的输出是离散值。
例如,“喜欢比萨上的菠萝”和“不喜欢比萨上的菠萝”是离散的。

⑵ 多层感器有监督学习是不是可以理解为BP神经网络

多层感知器不是一个具体的神经网络,它是一种神经网络模型的结构,bp神经网络的模型的确是多层感知器,不过bp神经网络是利用bp算法来优化网络的,可以理解为
bp神经网络 = 多层感知器 + bp算法

⑶ 监督分类的常用算法

常用算法有:判别分析、最大似然分析、特征分析、序贯分析和图形识别等。

⑷ 无监督和有监督算法分别有哪些

听听别人怎么说: 非监督式学习不同于监督式学习,一个没有教学价值,另一个有教学价值。然而,我认为它们之间的区别在于非监督式学习通常使用聚类和其他算法来对不同的样本进行分类。监督式学习通常利用教学值与实际输出值之间的误差,进行误差反向传播来修正权值,完成网络校正。但是,非监督式学习并没有改变操作的权重,当然,这里只说是特征提取阶段。

⑸ 有监督和无监督学习都各有哪些有名的算法和深度学习

  • 深度学习

  • 编辑

  • 深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。[1]

  • 深度学习的概念由Hinton等人于2006年提出。基于深度置信网络(DBN)提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。此外Lecun等人提出的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数目以提高训练性能。[1]

  • 深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。[2]

⑹ 有监督学习和无监督学习算法怎么理解

在判断是有监督学习还是在无监督学习上,我们可以具体是否有监督(supervised),就看输入数据是否有标签(label)。输入数据有标签,则为有监督学习,没标签则为无监督学习。

什么是学习(learning)?

一个成语就可概括:举一反三。机器学习的思路有点类似高考一套套做模拟试题,从而熟悉各种题型,能够面对陌生的问题时算出答案。

简而言之,机器学习就是看能不能利用一些训练数据(已经做过的题),使机器能够利用它们(解题方法)分析未知数据(高考题目),而这种根据类别未知(没有被标记)的训练样本解决模式识别中的各种问题,称之为无监督学习。

常用的无监督学习算法主要有三种:聚类、离散点检测和降维,包括主成分分析方法PCA等,等距映射方法、局部线性嵌入方法、拉普拉斯特征映射方法、黑塞局部线性嵌入方法和局部切空间排列方法等。

从原理上来说,PCA等数据降维算法同样适用于深度学习,但是这些数据降维方法复杂度较高,所以现在深度学习中采用的无监督学习方法通常采用较为简单的算法和直观的评价标准。比如无监督学习中最常用且典型方法聚类。

在无监督学习中,我们需要将一系列无标签的训练数据,输入到一个算法中,然后我们告诉这个算法,快去为我们找找这个数据的内在结构给定数据。这时就需要某种算法帮助我们寻找一种结构。

监督学习(supervised learning),是从给定的有标注的训练数据集中学习出一个函数(模型参数),当新的数据到来时可以根据这个函数预测结果。 常见任务包括分类与回归。

无监督学习方法在寻找数据集中的规律性,这种规律性并不一定要达到划分数据集的目的,也就是说不一定要“分类”。比如,一组颜色各异的积木,它可以按形状为维度来分类,也可以按颜色为维度来分类。(这一点比监督学习方法的用途要广。如分析一堆数据的主分量,或分析数据集有什么特点都可以归于无监督学习方法的范畴) ,而有监督学习则是通过已经有的有标签的数据集去训练得到一个最优模型。

⑺ “有监督学习”和“监督学习”分别是什么

1、监督式学习(Supervised learning),是一个机器学习中的方法,可以由训练资料中学到或建立一个模式( learning model),并依此模式推测新的实例。训练资料是由输入物件(通常是向量)和预期输出所组成。函数的输出可以是一个连续的值(称为回归分析),或是预测一个分类标签(称作分类)。

个监督式学习者的任务在观察完一些训练范例(输入和预期输出)后,去预测这个函数对任何可能出现的输入的值的输出。要达到此目的,学习者必须以"合理"(见归纳偏向)的方式从现有的资料中一般化到非观察到的情况。在人类和动物感知中,则通常被称为概念学习(concept learning)。

2、无监督式学习(Unsupervised Learning )是人工智能网络的一种算法(algorithm),其目的是去对原始资料进行分类,以便了解资料内部结构。

有别于监督式学习网络,无监督式学习网络在学习时并不知道其分类结果是否正确,亦即没有受到监督式增强(告诉它何种学习是正确的)。其特点是仅对此种网络提供输入范例,而它会自动从这些范例中找出其潜在类别规则。当学习完毕并经测试后,也可以将之应用到新的案例上。

无监督学习里典型的例子就是聚类了。聚类的目的在于把相似的东西聚在一起,而我们并不关心这一类是什么。因此,一个聚类算法通常只需要知道如何计算相似度就可以开始工作了。

⑻ 常见的监督学习算法

K-近邻算法,决策树,朴素贝叶斯,逻辑回归这些都是比较常见的。所有的回归算法和分类算法都属于监督学习。
在机器学习中,无监督学习就是聚类,事先不知道样本的类别,通过某种办法,把相似的样本放在一起归位一类;而监督型学习就是有训练样本,带有属性标签,也可以理解成样本有输入有输出。
回归和分类的算法区别在于输出变量的类型,定量输出称为回归,或者说是连续变量预测;定性输出称为分类,或者说是离散变量预测。

⑼ 无监督学习与有监督学习算法的区别

无监督学习的好处之一是,它不需要监督学习必须经历的费力的数据标记过程。但是,要权衡的是,评估其性能的有效性也非常困难。相比之下,通过将监督学习算法的输出与测试数据的实际标签进行比较,可以很容易地衡量监督学习算法的准确性。

⑽ 线性回归是有监督还是无监督

线性回归是有监督。
机器学习的常用方法,主要分为有监督学习(supervised learning)和无监督学习(unsupervised learning)。简单的归纳就是,是否有监督(supervised),就看输入数据是否有标签(label)。输入数据有标签,则为有监督学习;没标签则为无监督学习。
监督学习是指数据集的正确输出已知情况下的一类学习算法。因为输入和输出已知,意味着输入和输出之间有一个关系,监督学习算法就是要发现和总结这种“关系”。

无监督学习是指对无标签数据的一类学习算法。因为没有标签信息,意味着需要从数据集中发现和总结模式或者结构。我们基于数据中的变量之间关系利用聚类算法发现这种内在模式或者结构。

热点内容
sql语句执行错误 发布:2025-01-18 03:21:49 浏览:650
数据库双引号 发布:2025-01-18 03:10:20 浏览:78
学java和php 发布:2025-01-18 03:01:03 浏览:451
怎么开服务器的端口 发布:2025-01-18 02:54:23 浏览:647
别克君越编程 发布:2025-01-18 02:32:24 浏览:913
ftp游戏下载网站 发布:2025-01-18 02:09:04 浏览:628
python调用另一个文件中的函数 发布:2025-01-18 02:03:54 浏览:597
mysql存储html 发布:2025-01-18 01:57:24 浏览:129
双ip服务器对网站优化有影响吗 发布:2025-01-18 01:56:41 浏览:246
汽车配置怎么区分自动挡 发布:2025-01-18 01:53:06 浏览:229