算法可单干
‘壹’ 算法是什么意思 谢谢
算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。
算法中的指令描述的是一个计算,当其运行时能从一个初始状态和(可能为空的)初始输入开始,经过一系列有限而清晰定义的状态,最终产生输出并停止于一个终态。一个状态到另一个状态的转移不一定是确定的。随机化算法在内的一些算法,包含了一些随机输入。
(1)算法可单干扩展阅读:
算法分类:
1、有限的,确定性算法 这类算法在有限的一段时间内终止。他们可能要花很长时间来执行指定的任务,但仍将在一定的时间内终止。这类算法得出的结果常取决于输入值。
2、有限的,非确定算法 这类算法在有限的时间内终止。然而,对于一个(或一些)给定的数值,算法的结果并不是唯一的或确定的。
3、无限的算法 是那些由于没有定义终止定义条件,或定义的条件无法由输入的数据满足而不终止运行的算法。通常,无限算法的产生是由于未能确定的定义终止条件。
‘贰’ 算法的描述、特性以及概念
描述算法的方法有多种,常用的有自然语言、结构化流程图、伪代码和PAD图等,其中最普遍的是流程图。
分类:算法可大致分为基本算法、数据结构的算法、数论与代数算法、计算几何的算法、图论的算法、动态规划以及数值分析、加密算法、排序算法、检索算法、随机化算法、并行算法,厄米变形模型,随机森林算法。
特征:有穷性,算法的有穷性是指算法必须能在执行有限个步骤之后终止;确切性,算法的每一步骤必须有确切的定义;输入项:一个算法有0个或多个输入,;输出项;可行性,算法中执行的任何计算步骤都是可以被分解为基本的可执行的操作步,即每个计算步都可以在有限时间内完成。
(2)算法可单干扩展阅读
算法历史:
“算法”即算法的大陆中文名称出自《周髀算经》;而英文名称Algorithm 来自于9世纪波斯数学家al-Khwarizmi,al-Khwarizmi在数学上提出了算法这个概念。“算法”,意思是阿拉伯数字的运算法则,在18世纪演变为"algorithm"。
因为巴贝奇未能完成他的巴贝奇分析机,这个算法未能在巴贝奇分析机上执行。 20世纪的英国数学家图灵提出了着名的图灵论题,并提出一种假想的计算机的抽象模型,这个模型被称为图灵机。图灵机的出现解决了算法定义的难题,图灵的思想对算法的发展起到了重要作用。
‘叁’ 算法工程师应该学哪些
一、算法工程师简介
(通常是月薪15k以上,年薪18万以上,只是一个概数,具体薪资可以到招聘网站如拉钩,猎聘网上看看)
算法工程师目前是一个高端也是相对紧缺的职位;
算法工程师包括
音/视频算法工程师(通常统称为语音/视频/图形开发工程师)、图像处理算法工程师、计算机视觉算法工程师、通信基带算法工程师、信号算法工程师、射频/通信算法工程师、自然语言算法工程师、数据挖掘算法工程师、搜索算法工程师、控制算法工程师(云台算法工程师,飞控算法工程师,机器人控制算法)、导航算法工程师(
@之介
感谢补充)、其他【其他一切需要复杂算法的行业】
专业要求:计算机、电子、通信、数学等相关专业;
学历要求:本科及其以上的学历,大多数是硕士学历及其以上;
语言要求:英语要求是熟练,基本上能阅读国外专业书刊,做这一行经常要读论文;
必须掌握计算机相关知识,熟练使用仿真工具MATLAB等,必须会一门编程语言。
算法工程师的技能树(不同方向差异较大,此处仅供参考)
1 机器学习
2 大数据处理:熟悉至少一个分布式计算框架Hadoop/Spark/Storm/ map-rece/MPI
3 数据挖掘
4 扎实的数学功底
5 至少熟悉C/C++或者java,熟悉至少一门编程语言例如java/python/R
加分项:具有较为丰富的项目实践经验(不是水论文的哪种)
二、算法工程师大致分类与技术要求
(一)图像算法/计算机视觉工程师类
包括
图像算法工程师,图像处理工程师,音/视频处理算法工程师,计算机视觉工程师
要求
l
专业:计算机、数学、统计学相关专业;
l
技术领域:机器学习,模式识别
l
技术要求:
(1) 精通DirectX HLSL和OpenGL GLSL等shader语言,熟悉常见图像处理算法GPU实现及优化;
(2) 语言:精通C/C++;
(3) 工具:Matlab数学软件,CUDA运算平台,VTK图像图形开源软件【医学领域:ITK,医学图像处理软件包】
(4) 熟悉OpenCV/OpenGL/Caffe等常用开源库;
(5) 有人脸识别,行人检测,视频分析,三维建模,动态跟踪,车识别,目标检测跟踪识别经历的人优先考虑;
(6) 熟悉基于GPU的算法设计与优化和并行优化经验者优先;
(7) 【音/视频领域】熟悉H.264等视频编解码标准和FFMPEG,熟悉rtmp等流媒体传输协议,熟悉视频和音频解码算法,研究各种多媒体文件格式,GPU加速;
应用领域:
(1) 互联网:如美颜app
(2) 医学领域:如临床医学图像
(3) 汽车领域
(4) 人工智能
相关术语:
(1) OCR:OCR (Optical Character Recognition,光学字符识别)是指电子设备(例如扫描仪或数码相机)检查纸上打印的字符,通过检测暗、亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机文字的过程
(2) Matlab:商业数学软件;
(3) CUDA: (Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台(由ISA和GPU构成)。 CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题
(4) OpenCL: OpenCL是一个为异构平台编写程序的框架,此异构平台可由CPU,GPU或其他类型的处理器组成。
(5) OpenCV:开源计算机视觉库;OpenGL:开源图形库;Caffe:是一个清晰,可读性高,快速的深度学习框架。
(6) CNN:(深度学习)卷积神经网络(Convolutional Neural Network)CNN主要用来识别位移、缩放及其他形式扭曲不变性的二维图形。
(7) 开源库:指的是计算机行业中对所有人开发的代码库,所有人均可以使用并改进代码算法。
(二)机器学习工程师
包括
机器学习工程师
要求
l
专业:计算机、数学、统计学相关专业;
l
技术领域:人工智能,机器学习
l
技术要求:
(1) 熟悉Hadoop/Hive以及Map-Rece计算模式,熟悉Spark、Shark等尤佳;
(2) 大数据挖掘;
(3) 高性能、高并发的机器学习、数据挖掘方法及架构的研发;
应用领域:
(1)人工智能,比如各类仿真、拟人应用,如机器人
(2)医疗用于各类拟合预测
(3)金融高频交易
(4)互联网数据挖掘、关联推荐
(5)无人汽车,无人机
相关术语:
(1) Map-Rece:MapRece是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Rece(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。
(三)自然语言处理工程师
包括
自然语言处理工程师
要求
l
专业:计算机相关专业;
l
技术领域:文本数据库
l
技术要求:
(1) 熟悉中文分词标注、文本分类、语言模型、实体识别、知识图谱抽取和推理、问答系统设计、深度问答等NLP 相关算法;
(2) 应用NLP、机器学习等技术解决海量UGC的文本相关性;
(3) 分词、词性分析、实体识别、新词发现、语义关联等NLP基础性研究与开发;
(4) 人工智能,分布式处理Hadoop;
(5) 数据结构和算法;
应用领域:
口语输入、书面语输入
、语言分析和理解、语言生成、口语输出技术、话语分析与对话、文献自动处理、多语问题的计算机处理、多模态的计算机处理、信息传输与信息存储 、自然语言处理中的数学方法、语言资源、自然语言处理系统的评测。
相关术语:
(2) NLP:人工智能的自然语言处理,NLP (Natural Language Processing) 是人工智能(AI)的一个子领域。NLP涉及领域很多,最令我感兴趣的是“中文自动分词”(Chinese word segmentation):结婚的和尚未结婚的【计算机中却有可能理解为结婚的“和尚“】
(四)射频/通信/信号算法工程师类
包括
3G/4G无线通信算法工程师, 通信基带算法工程师,DSP开发工程师(数字信号处理),射频通信工程师,信号算法工程师
要求
l
专业:计算机、通信相关专业;
l
技术领域:2G、3G、4G,BlueTooth(蓝牙),WLAN,无线移动通信, 网络通信基带信号处理
l
技术要求:
(1) 了解2G,3G,4G,BlueTooth,WLAN等无线通信相关知识,熟悉现有的通信系统和标准协议,熟悉常用的无线测试设备;
(2) 信号处理技术,通信算法;
(3) 熟悉同步、均衡、信道译码等算法的基本原理;
(4) 【射频部分】熟悉射频前端芯片,扎实的射频微波理论和测试经验,熟练使用射频电路仿真工具(如ADS或MW或Ansoft);熟练使用cadence、altium designer PCB电路设计软件;
(5) 有扎实的数学基础,如复变函数、随机过程、数值计算、矩阵论、离散数学
应用领域:
通信
VR【用于快速传输视频图像,例如乐客灵境VR公司招募的通信工程师(数据编码、流数据)】
物联网,车联网
导航,军事,卫星,雷达
相关术语:
(1) 基带信号:指的是没有经过调制(进行频谱搬移和变换)的原始电信号。
(2) 基带通信(又称基带传输):指传输基带信号。进行基带传输的系统称为基带传输系统。传输介质的整个信道被一个基带信号占用.基带传输不需要调制解调器,设备化费小,具有速率高和误码率低等优点,.适合短距离的数据传输,传输距离在100米内,在音频市话、计算机网络通信中被广泛采用。如从计算机到监视器、打印机等外设的信号就是基带传输的。大多数的局域网使用基带传输,如以太网、令牌环网。
(3) 射频:射频(RF)是Radio Frequency的缩写,表示可以辐射到空间的电磁频率(电磁波),频率范围从300KHz~300GHz之间(因为其较高的频率使其具有远距离传输能力)。射频简称RF射频就是射频电流,它是一种高频交流变化电磁波的简称。每秒变化小于1000次的交流电称为低频电流,大于10000次的称为高频电流,而射频就是这样一种高频电流。高频(大于10K);射频(300K-300G)是高频的较高频段;微波频段(300M-300G)又是射频的较高频段。【有线电视就是用射频传输方式】
(4) DSP:数字信号处理,也指数字信号处理芯片
(五)数据挖掘算法工程师类
包括
推荐算法工程师,数据挖掘算法工程师
要求
l
专业:计算机、通信、应用数学、金融数学、模式识别、人工智能;
l
技术领域:机器学习,数据挖掘
l
技术要求:
(1) 熟悉常用机器学习和数据挖掘算法,包括但不限于决策树、Kmeans、SVM、线性回归、逻辑回归以及神经网络等算法;
(2) 熟练使用SQL、Matlab、Python等工具优先;
(3) 对Hadoop、Spark、Storm等大规模数据存储与运算平台有实践经验【均为分布式计算框架】
(4) 数学基础要好,如高数,统计学,数据结构
l
加分项:数据挖掘建模大赛;
应用领域
(1) 个性化推荐
(2) 广告投放
(3) 大数据分析
相关术语
Map-Rece:MapRece是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Rece(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。
(六)搜索算法工程师
要求
l
技术领域:自然语言
l
技术要求:
(1) 数据结构,海量数据处理、高性能计算、大规模分布式系统开发
(2) hadoop、lucene
(3) 精通Lucene/Solr/Elastic Search等技术,并有二次开发经验
(4) 精通Lucene/Solr/Elastic Search等技术,并有二次开发经验;
(5) 精通倒排索引、全文检索、分词、排序等相关技术;
(6) 熟悉Java,熟悉Spring、MyBatis、Netty等主流框架;
(7) 优秀的数据库设计和优化能力,精通MySQL数据库应用 ;
(8) 了解推荐引擎和数据挖掘和机器学习的理论知识,有大型搜索应用的开发经验者优先。
(七)控制算法工程师类
包括了云台控制算法,飞控控制算法,机器人控制算法
要求
l
专业:计算机,电子信息工程,航天航空,自动化
l
技术要求:
(1) 精通自动控制原理(如PID)、现代控制理论,精通组合导航原理,姿态融合算法,电机驱动,电机驱动
(2) 卡尔曼滤波,熟悉状态空间分析法对控制系统进行数学模型建模、分析调试;
l
加分项:有电子设计大赛,机器人比赛,robocon等比赛经验,有硬件设计的基础;
应用领域
(1)医疗/工业机械设备
(2)工业机器人
(3)机器人
(4)无人机飞控、云台控制等
(八)导航算法工程师
要求
l 专业:计算机,电子信息工程,航天航空,自动化
l 技术要求(以公司职位JD为例)
公司一(1)精通惯性导航、激光导航、雷达导航等工作原理;
(2)精通组合导航算法设计、精通卡尔曼滤波算法、精通路径规划算法;
(3)具备导航方案设计和实现的工程经验;
(4)熟悉C/C++语言、熟悉至少一种嵌入式系统开发、熟悉Matlab工具;
公司二(1)熟悉基于视觉信息的SLAM、定位、导航算法,有1年以上相关的科研或项目经历;
(2)熟悉惯性导航算法,熟悉IMU与视觉信息的融合;
应用领域
无人机、机器人等。
‘肆’ 算法的概念
算法(Algorithm)是解题的步骤,可以把算法定义成解一确定类问题的任意一种特殊的方法。在计算机科学中,算法要用计算机算法语言描述,算法代表用计算机解一类问题的精确、有效的方法。算法+数据结构=程序,求解一个给定的可计算或可解的问题,不同的人可以编写出不同的程序,来解决同一个问题,这里存在两个问题:一是与计算方法密切相关的算法问题;二是程序设计的技术问题。算法和程序之间存在密切的关系。
算法是一组有穷的规则,它们规定了解决某一特定类型问题的一系列运算,是对解题方案的准确与完整的描述。制定一个算法,一般要经过设计、确认、分析、编码、测试、调试、计时等阶段。
对算法的学习包括五个方面的内容:① 设计算法。算法设计工作是不可能完全自动化的,应学习了解已经被实践证明是有用的一些基本的算法设计方法,这些基本的设计方法不仅适用于计算机科学,而且适用于电气工程、运筹学等领域;② 表示算法。描述算法的方法有多种形式,例如自然语言和算法语言,各自有适用的环境和特点;③确认算法。算法确认的目的是使人们确信这一算法能够正确无误地工作,即该算法具有可计算性。正确的算法用计算机算法语言描述,构成计算机程序,计算机程序在计算机上运行,得到算法运算的结果;④ 分析算法。算法分析是对一个算法需要多少计算时间和存储空间作定量的分析。分析算法可以预测这一算法适合在什么样的环境中有效地运行,对解决同一问题的不同算法的有效性作出比较;⑤ 验证算法。用计算机语言描述的算法是否可计算、有效合理,须对程序进行测试,测试程序的工作由调试和作时空分布图组成。
‘伍’ 研究生阶段方向为数字图像处理,不知就业前景如何求解
得图像处理的就业还是不错的。首先可以把图像看成二维、三维或者更高维的信号,从这个意义上来说,图像处理是整个信号处理里面就业形势最好的,因为你不仅要掌握一维信号处理的基本知识,也要掌握图像处理的知识。其次,图像处理是计算机视觉和视频处理的基础,掌握好了图像处理的基本知识,就业时就可以向这些方向发展。目前的模式识别,大部分也都是图像模式识别。在实际应用场合,采集的信息很多都是图像信息,比如指纹、条码、人脸、虹膜、车辆等等。说到应用场合,千万不能忘了医学图像这一块,如果有医学图像处理的背景,去一些医疗器械公司或者医疗软件公司也是不错的选择。图像处理对编程的要求比较高,如果编程很厉害,当然就业也多了一个选择方向,并不一定要局限在图像方向。希望帮到你
‘陆’ 跪求高手,可不可以靠写算法挣钱,需要具备哪些基础,或者说需要学习哪些书和软件,通过怎样的方式挣钱
csdn 去哪里看看 信息不少 那里有很多老师或者比赛信息……
‘柒’ 算法有哪些分类
算法分类编辑算法可大致分为:
基本算法、数据结构的算法、数论与代数算法、计算几何的算法、图论的算法、动态规划以及数值分析、加密算法、排序算法、检索算法、随机化算法、并行算法,厄米变形模型,随机森林算法。
‘捌’ 算法及其特性有哪些
1.算法的重要特性(1)有穷性:一个算法必须在执行有穷步骤之后正常结束,而不能形成无穷循环。
(2)确定性:算法中的每一条指令必须有确切的含义,不能产生多义性。
(2)可行性:算法中的每一条指令必须是切实可执行的,即原则上可以通过已经实现的基本运算执行有限次来实现。
(4)输入:一个算法应该有零个或多个输入。
(5)输出:一个算法应该有一个或多个输出,这些输出是同输入有特定关系的量。
2.算法描述的方法(1)框图描述:该方法使用流程图或N-S图来描述算法。
(2)自然语言描述:该方法采用自然语言,同时添加高级程序设计语言如while、for和if等基本控制语句来描述算法。这类描述方法自然、简洁,但缺乏严谨性和结构性。
(2)类语言描述:这是介于程序设计语言和自然语言之间算法描述形式,其特征是突出算法设计的主体部分而有意忽略某些过于严格的语法细节,如类C或C++的伪语言。这种算法不能直接在计算机上运行,但专业设计人员经常使用它来描述算法,它具有容易编写、阅读和格式统一的特点。
(4)程序设计语言描述:采用某种高级程序设计语言(如C或C++)来描述。这是可以在计算机上运行并获得结果的算法描述。
本课程将采用伪C语言进行算法描述。
2.算法与程序的关系算法的含义与程序十分相似,但二者是有区别的。算法和程序都是用来表达解决问题的逻辑步骤;算法是对解决问题方法的具体描述,程序是算法在计算机中的具体实现;一个程序不一定满足有穷性(死循环),而算法一定满足有穷性;程序中的指令必须是机器可执行的,而算法中的指令则无此限制;一个算法若用计算机语言来书写,则它就可以是一个程序。因此,程序是算法,但算法不一定是程序。4.算法设计要求在算法设计中,对同一个问题可以设计出不同的求解算法。如何评价这些算法的优劣,从而为算法设计和选择提供可靠的依据?通常可从以下四个方面评价算法的质量:
(1)正确性:算法应该能够正确地执行预先规定的功能,并达到所期望的性能要求。
(2)可读性:算法应该好读,以有利于读者对程序的理解,便于调试和修改。
(2)健壮性:算法应具有容错处理。当输入非法数据时,算法应对其作出反应,而不是产生莫名其妙的输出结果。
(4)效率与低存储量需求:效率指的是算法执行的时间。对于同一个问题,如果有多种算法可以求解,执行时间短的算法效率高。算法存储量指的是算法执行过程中所需要的最大存储空间。高效率和低存储量这两者与问题的规模有关。
‘玖’ 算法工程师可以自学吗
算法工程师可以自学。但是要求特别高,算法工程师要求很高的数学水平和逻辑思维,需要学习高数,线性代数离散数学数据结构和计算机组成原理等课程,专业要求计算机电子通信数学等相关专业。
算法工程师的要求
学历要求本科及其以上的学历,大多数是硕士学历及其以上,语言要求英语要求是熟练,基本上能阅读国外专业书刊,必须掌握计算机相关知识,熟练使用仿真工具MATLAB等,必须会一门编程语言。
算法工程师根据研究领域来分主要有音频视频算法处理,图像技术方面的二维信息算法处理和通信物理层,雷达信号处理生物医学信号处理等领域的一维信息算法处理,如果你基础比较好的话那是没什么问题的,如果你是小白零基础说实话比较难。